Whakaoti mō x, y
x=6
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+3y=30,3x+3y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y=30
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-3y+30
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y+30\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y+6
Whakareatia \frac{1}{5} ki te -3y+30.
3\left(-\frac{3}{5}y+6\right)+3y=18
Whakakapia te -\frac{3y}{5}+6 mō te x ki tērā atu whārite, 3x+3y=18.
-\frac{9}{5}y+18+3y=18
Whakareatia 3 ki te -\frac{3y}{5}+6.
\frac{6}{5}y+18=18
Tāpiri -\frac{9y}{5} ki te 3y.
\frac{6}{5}y=0
Me tango 18 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te \frac{6}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=6
Whakaurua te 0 mō y ki x=-\frac{3}{5}y+6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=6,y=0
Kua oti te pūnaha te whakatau.
5x+3y=30,3x+3y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}30\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\3&3\end{matrix}\right))\left(\begin{matrix}5&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&3\end{matrix}\right))\left(\begin{matrix}30\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&3\end{matrix}\right))\left(\begin{matrix}30\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\3&3\end{matrix}\right))\left(\begin{matrix}30\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-3\times 3}&-\frac{3}{5\times 3-3\times 3}\\-\frac{3}{5\times 3-3\times 3}&\frac{5}{5\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}30\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te poukapa kōaro ko \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), kia tuhia anō ai te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{1}{2}\\-\frac{1}{2}&\frac{5}{6}\end{matrix}\right)\left(\begin{matrix}30\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 30-\frac{1}{2}\times 18\\-\frac{1}{2}\times 30+\frac{5}{6}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=0
Tangohia ngā huānga poukapa x me y.
5x+3y=30,3x+3y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-3x+3y-3y=30-18
Me tango 3x+3y=18 mai i 5x+3y=30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-3x=30-18
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
2x=30-18
Tāpiri 5x ki te -3x.
2x=12
Tāpiri 30 ki te -18.
x=6
Whakawehea ngā taha e rua ki te 2.
3\times 6+3y=18
Whakaurua te 6 mō x ki 3x+3y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
18+3y=18
Whakareatia 3 ki te 6.
3y=0
Me tango 18 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 3.
x=6,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}