Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+2y=6,9x+2y=22
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+6
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+6\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+\frac{6}{5}
Whakareatia \frac{1}{5} ki te -2y+6.
9\left(-\frac{2}{5}y+\frac{6}{5}\right)+2y=22
Whakakapia te \frac{-2y+6}{5} mō te x ki tērā atu whārite, 9x+2y=22.
-\frac{18}{5}y+\frac{54}{5}+2y=22
Whakareatia 9 ki te \frac{-2y+6}{5}.
-\frac{8}{5}y+\frac{54}{5}=22
Tāpiri -\frac{18y}{5} ki te 2y.
-\frac{8}{5}y=\frac{56}{5}
Me tango \frac{54}{5} mai i ngā taha e rua o te whārite.
y=-7
Whakawehea ngā taha e rua o te whārite ki te -\frac{8}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\left(-7\right)+\frac{6}{5}
Whakaurua te -7 mō y ki x=-\frac{2}{5}y+\frac{6}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{14+6}{5}
Whakareatia -\frac{2}{5} ki te -7.
x=4
Tāpiri \frac{6}{5} ki te \frac{14}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=-7
Kua oti te pūnaha te whakatau.
5x+2y=6,9x+2y=22
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\9&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\22\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\9&2\end{matrix}\right))\left(\begin{matrix}5&2\\9&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\9&2\end{matrix}\right))\left(\begin{matrix}6\\22\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\9&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\9&2\end{matrix}\right))\left(\begin{matrix}6\\22\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\9&2\end{matrix}\right))\left(\begin{matrix}6\\22\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5\times 2-2\times 9}&-\frac{2}{5\times 2-2\times 9}\\-\frac{9}{5\times 2-2\times 9}&\frac{5}{5\times 2-2\times 9}\end{matrix}\right)\left(\begin{matrix}6\\22\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{9}{8}&-\frac{5}{8}\end{matrix}\right)\left(\begin{matrix}6\\22\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 6+\frac{1}{4}\times 22\\\frac{9}{8}\times 6-\frac{5}{8}\times 22\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\-7\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=-7
Tangohia ngā huānga poukapa x me y.
5x+2y=6,9x+2y=22
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x-9x+2y-2y=6-22
Me tango 9x+2y=22 mai i 5x+2y=6 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
5x-9x=6-22
Tāpiri 2y ki te -2y. Ka whakakore atu ngā kupu 2y me -2y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-4x=6-22
Tāpiri 5x ki te -9x.
-4x=-16
Tāpiri 6 ki te -22.
x=4
Whakawehea ngā taha e rua ki te -4.
9\times 4+2y=22
Whakaurua te 4 mō x ki 9x+2y=22. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
36+2y=22
Whakareatia 9 ki te 4.
2y=-14
Me tango 36 mai i ngā taha e rua o te whārite.
y=-7
Whakawehea ngā taha e rua ki te 2.
x=4,y=-7
Kua oti te pūnaha te whakatau.