Whakaoti mō x, y
x=4
y=7
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+2y=34,7x-3y=7
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=34
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+34
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+34\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+\frac{34}{5}
Whakareatia \frac{1}{5} ki te -2y+34.
7\left(-\frac{2}{5}y+\frac{34}{5}\right)-3y=7
Whakakapia te \frac{-2y+34}{5} mō te x ki tērā atu whārite, 7x-3y=7.
-\frac{14}{5}y+\frac{238}{5}-3y=7
Whakareatia 7 ki te \frac{-2y+34}{5}.
-\frac{29}{5}y+\frac{238}{5}=7
Tāpiri -\frac{14y}{5} ki te -3y.
-\frac{29}{5}y=-\frac{203}{5}
Me tango \frac{238}{5} mai i ngā taha e rua o te whārite.
y=7
Whakawehea ngā taha e rua o te whārite ki te -\frac{29}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\times 7+\frac{34}{5}
Whakaurua te 7 mō y ki x=-\frac{2}{5}y+\frac{34}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-14+34}{5}
Whakareatia -\frac{2}{5} ki te 7.
x=4
Tāpiri \frac{34}{5} ki te -\frac{14}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=4,y=7
Kua oti te pūnaha te whakatau.
5x+2y=34,7x-3y=7
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}34\\7\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}5&2\\7&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\7&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\7&-3\end{matrix}\right))\left(\begin{matrix}34\\7\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-2\times 7}&-\frac{2}{5\left(-3\right)-2\times 7}\\-\frac{7}{5\left(-3\right)-2\times 7}&\frac{5}{5\left(-3\right)-2\times 7}\end{matrix}\right)\left(\begin{matrix}34\\7\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}&\frac{2}{29}\\\frac{7}{29}&-\frac{5}{29}\end{matrix}\right)\left(\begin{matrix}34\\7\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{29}\times 34+\frac{2}{29}\times 7\\\frac{7}{29}\times 34-\frac{5}{29}\times 7\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\7\end{matrix}\right)
Mahia ngā tātaitanga.
x=4,y=7
Tangohia ngā huānga poukapa x me y.
5x+2y=34,7x-3y=7
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 5x+7\times 2y=7\times 34,5\times 7x+5\left(-3\right)y=5\times 7
Kia ōrite ai a 5x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
35x+14y=238,35x-15y=35
Whakarūnātia.
35x-35x+14y+15y=238-35
Me tango 35x-15y=35 mai i 35x+14y=238 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y+15y=238-35
Tāpiri 35x ki te -35x. Ka whakakore atu ngā kupu 35x me -35x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
29y=238-35
Tāpiri 14y ki te 15y.
29y=203
Tāpiri 238 ki te -35.
y=7
Whakawehea ngā taha e rua ki te 29.
7x-3\times 7=7
Whakaurua te 7 mō y ki 7x-3y=7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-21=7
Whakareatia -3 ki te 7.
7x=28
Me tāpiri 21 ki ngā taha e rua o te whārite.
x=4
Whakawehea ngā taha e rua ki te 7.
x=4,y=7
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}