Whakaoti mō x, y
x=3
y = \frac{11}{2} = 5\frac{1}{2} = 5.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+2y=26,3x+8y=53
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=26
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+26
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+26\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+\frac{26}{5}
Whakareatia \frac{1}{5} ki te -2y+26.
3\left(-\frac{2}{5}y+\frac{26}{5}\right)+8y=53
Whakakapia te \frac{-2y+26}{5} mō te x ki tērā atu whārite, 3x+8y=53.
-\frac{6}{5}y+\frac{78}{5}+8y=53
Whakareatia 3 ki te \frac{-2y+26}{5}.
\frac{34}{5}y+\frac{78}{5}=53
Tāpiri -\frac{6y}{5} ki te 8y.
\frac{34}{5}y=\frac{187}{5}
Me tango \frac{78}{5} mai i ngā taha e rua o te whārite.
y=\frac{11}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{34}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\times \frac{11}{2}+\frac{26}{5}
Whakaurua te \frac{11}{2} mō y ki x=-\frac{2}{5}y+\frac{26}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-11+26}{5}
Whakareatia -\frac{2}{5} ki te \frac{11}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3
Tāpiri \frac{26}{5} ki te -\frac{11}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=3,y=\frac{11}{2}
Kua oti te pūnaha te whakatau.
5x+2y=26,3x+8y=53
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}26\\53\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\3&8\end{matrix}\right))\left(\begin{matrix}5&2\\3&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&8\end{matrix}\right))\left(\begin{matrix}26\\53\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\3&8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&8\end{matrix}\right))\left(\begin{matrix}26\\53\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\3&8\end{matrix}\right))\left(\begin{matrix}26\\53\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{5\times 8-2\times 3}&-\frac{2}{5\times 8-2\times 3}\\-\frac{3}{5\times 8-2\times 3}&\frac{5}{5\times 8-2\times 3}\end{matrix}\right)\left(\begin{matrix}26\\53\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}&-\frac{1}{17}\\-\frac{3}{34}&\frac{5}{34}\end{matrix}\right)\left(\begin{matrix}26\\53\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\times 26-\frac{1}{17}\times 53\\-\frac{3}{34}\times 26+\frac{5}{34}\times 53\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\\frac{11}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=\frac{11}{2}
Tangohia ngā huānga poukapa x me y.
5x+2y=26,3x+8y=53
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5x+3\times 2y=3\times 26,5\times 3x+5\times 8y=5\times 53
Kia ōrite ai a 5x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15x+6y=78,15x+40y=265
Whakarūnātia.
15x-15x+6y-40y=78-265
Me tango 15x+40y=265 mai i 15x+6y=78 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y-40y=78-265
Tāpiri 15x ki te -15x. Ka whakakore atu ngā kupu 15x me -15x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-34y=78-265
Tāpiri 6y ki te -40y.
-34y=-187
Tāpiri 78 ki te -265.
y=\frac{11}{2}
Whakawehea ngā taha e rua ki te -34.
3x+8\times \frac{11}{2}=53
Whakaurua te \frac{11}{2} mō y ki 3x+8y=53. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+44=53
Whakareatia 8 ki te \frac{11}{2}.
3x=9
Me tango 44 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te 3.
x=3,y=\frac{11}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}