Whakaoti mō x, y
x = \frac{45}{11} = 4\frac{1}{11} \approx 4.090909091
y = -\frac{19}{11} = -1\frac{8}{11} \approx -1.727272727
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+2y=17,2x+3y=3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=17
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+17
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+17\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+\frac{17}{5}
Whakareatia \frac{1}{5} ki te -2y+17.
2\left(-\frac{2}{5}y+\frac{17}{5}\right)+3y=3
Whakakapia te \frac{-2y+17}{5} mō te x ki tērā atu whārite, 2x+3y=3.
-\frac{4}{5}y+\frac{34}{5}+3y=3
Whakareatia 2 ki te \frac{-2y+17}{5}.
\frac{11}{5}y+\frac{34}{5}=3
Tāpiri -\frac{4y}{5} ki te 3y.
\frac{11}{5}y=-\frac{19}{5}
Me tango \frac{34}{5} mai i ngā taha e rua o te whārite.
y=-\frac{19}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\left(-\frac{19}{11}\right)+\frac{17}{5}
Whakaurua te -\frac{19}{11} mō y ki x=-\frac{2}{5}y+\frac{17}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{38}{55}+\frac{17}{5}
Whakareatia -\frac{2}{5} ki te -\frac{19}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{45}{11}
Tāpiri \frac{17}{5} ki te \frac{38}{55} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{45}{11},y=-\frac{19}{11}
Kua oti te pūnaha te whakatau.
5x+2y=17,2x+3y=3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}5&2\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\2&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&3\end{matrix}\right))\left(\begin{matrix}17\\3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-2\times 2}&-\frac{2}{5\times 3-2\times 2}\\-\frac{2}{5\times 3-2\times 2}&\frac{5}{5\times 3-2\times 2}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{2}{11}\\-\frac{2}{11}&\frac{5}{11}\end{matrix}\right)\left(\begin{matrix}17\\3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 17-\frac{2}{11}\times 3\\-\frac{2}{11}\times 17+\frac{5}{11}\times 3\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{45}{11}\\-\frac{19}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{45}{11},y=-\frac{19}{11}
Tangohia ngā huānga poukapa x me y.
5x+2y=17,2x+3y=3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 2y=2\times 17,5\times 2x+5\times 3y=5\times 3
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+4y=34,10x+15y=15
Whakarūnātia.
10x-10x+4y-15y=34-15
Me tango 10x+15y=15 mai i 10x+4y=34 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y-15y=34-15
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-11y=34-15
Tāpiri 4y ki te -15y.
-11y=19
Tāpiri 34 ki te -15.
y=-\frac{19}{11}
Whakawehea ngā taha e rua ki te -11.
2x+3\left(-\frac{19}{11}\right)=3
Whakaurua te -\frac{19}{11} mō y ki 2x+3y=3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{57}{11}=3
Whakareatia 3 ki te -\frac{19}{11}.
2x=\frac{90}{11}
Me tāpiri \frac{57}{11} ki ngā taha e rua o te whārite.
x=\frac{45}{11}
Whakawehea ngā taha e rua ki te 2.
x=\frac{45}{11},y=-\frac{19}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}