Whakaoti mō x, y
x=2
y=0
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+2y=10,4x+y=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y+10
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y+10\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y+2
Whakareatia \frac{1}{5} ki te -2y+10.
4\left(-\frac{2}{5}y+2\right)+y=8
Whakakapia te -\frac{2y}{5}+2 mō te x ki tērā atu whārite, 4x+y=8.
-\frac{8}{5}y+8+y=8
Whakareatia 4 ki te -\frac{2y}{5}+2.
-\frac{3}{5}y+8=8
Tāpiri -\frac{8y}{5} ki te y.
-\frac{3}{5}y=0
Me tango 8 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{3}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=2
Whakaurua te 0 mō y ki x=-\frac{2}{5}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2,y=0
Kua oti te pūnaha te whakatau.
5x+2y=10,4x+y=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}5&2\\4&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\4&1\end{matrix}\right))\left(\begin{matrix}10\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2\times 4}&-\frac{2}{5-2\times 4}\\-\frac{4}{5-2\times 4}&\frac{5}{5-2\times 4}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&\frac{2}{3}\\\frac{4}{3}&-\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}10\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\times 10+\frac{2}{3}\times 8\\\frac{4}{3}\times 10-\frac{5}{3}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=0
Tangohia ngā huānga poukapa x me y.
5x+2y=10,4x+y=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 5x+4\times 2y=4\times 10,5\times 4x+5y=5\times 8
Kia ōrite ai a 5x me 4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
20x+8y=40,20x+5y=40
Whakarūnātia.
20x-20x+8y-5y=40-40
Me tango 20x+5y=40 mai i 20x+8y=40 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
8y-5y=40-40
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
3y=40-40
Tāpiri 8y ki te -5y.
3y=0
Tāpiri 40 ki te -40.
y=0
Whakawehea ngā taha e rua ki te 3.
4x=8
Whakaurua te 0 mō y ki 4x+y=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Whakawehea ngā taha e rua ki te 4.
x=2,y=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}