Whakaoti mō x, y
x=\frac{4}{17}\approx 0.235294118
y=-\frac{10}{17}\approx -0.588235294
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+2y=0,6x-y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2\right)y
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y
Whakareatia \frac{1}{5} ki te -2y.
6\left(-\frac{2}{5}\right)y-y=2
Whakakapia te -\frac{2y}{5} mō te x ki tērā atu whārite, 6x-y=2.
-\frac{12}{5}y-y=2
Whakareatia 6 ki te -\frac{2y}{5}.
-\frac{17}{5}y=2
Tāpiri -\frac{12y}{5} ki te -y.
y=-\frac{10}{17}
Whakawehea ngā taha e rua o te whārite ki te -\frac{17}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\left(-\frac{10}{17}\right)
Whakaurua te -\frac{10}{17} mō y ki x=-\frac{2}{5}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{4}{17}
Whakareatia -\frac{2}{5} ki te -\frac{10}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{4}{17},y=-\frac{10}{17}
Kua oti te pūnaha te whakatau.
5x+2y=0,6x-y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}5&2\\6&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\6&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\6&-1\end{matrix}\right))\left(\begin{matrix}0\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-2\times 6}&-\frac{2}{5\left(-1\right)-2\times 6}\\-\frac{6}{5\left(-1\right)-2\times 6}&\frac{5}{5\left(-1\right)-2\times 6}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{17}&\frac{2}{17}\\\frac{6}{17}&-\frac{5}{17}\end{matrix}\right)\left(\begin{matrix}0\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 2\\-\frac{5}{17}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{17}\\-\frac{10}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{4}{17},y=-\frac{10}{17}
Tangohia ngā huānga poukapa x me y.
5x+2y=0,6x-y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 5x+6\times 2y=0,5\times 6x+5\left(-1\right)y=5\times 2
Kia ōrite ai a 5x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
30x+12y=0,30x-5y=10
Whakarūnātia.
30x-30x+12y+5y=-10
Me tango 30x-5y=10 mai i 30x+12y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
12y+5y=-10
Tāpiri 30x ki te -30x. Ka whakakore atu ngā kupu 30x me -30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
17y=-10
Tāpiri 12y ki te 5y.
y=-\frac{10}{17}
Whakawehea ngā taha e rua ki te 17.
6x-\left(-\frac{10}{17}\right)=2
Whakaurua te -\frac{10}{17} mō y ki 6x-y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x=\frac{24}{17}
Me tango \frac{10}{17} mai i ngā taha e rua o te whārite.
x=\frac{4}{17}
Whakawehea ngā taha e rua ki te 6.
x=\frac{4}{17},y=-\frac{10}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}