Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+2y=-16,2x-3y=5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+2y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=-2y-16
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-2y-16\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{2}{5}y-\frac{16}{5}
Whakareatia \frac{1}{5} ki te -2y-16.
2\left(-\frac{2}{5}y-\frac{16}{5}\right)-3y=5
Whakakapia te \frac{-2y-16}{5} mō te x ki tērā atu whārite, 2x-3y=5.
-\frac{4}{5}y-\frac{32}{5}-3y=5
Whakareatia 2 ki te \frac{-2y-16}{5}.
-\frac{19}{5}y-\frac{32}{5}=5
Tāpiri -\frac{4y}{5} ki te -3y.
-\frac{19}{5}y=\frac{57}{5}
Me tāpiri \frac{32}{5} ki ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te -\frac{19}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{2}{5}\left(-3\right)-\frac{16}{5}
Whakaurua te -3 mō y ki x=-\frac{2}{5}y-\frac{16}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{6-16}{5}
Whakareatia -\frac{2}{5} ki te -3.
x=-2
Tāpiri -\frac{16}{5} ki te \frac{6}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-2,y=-3
Kua oti te pūnaha te whakatau.
5x+2y=-16,2x-3y=5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}5&2\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-16\\5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&2\\2&-3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-16\\5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&2\\2&-3\end{matrix}\right))\left(\begin{matrix}-16\\5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{5\left(-3\right)-2\times 2}&-\frac{2}{5\left(-3\right)-2\times 2}\\-\frac{2}{5\left(-3\right)-2\times 2}&\frac{5}{5\left(-3\right)-2\times 2}\end{matrix}\right)\left(\begin{matrix}-16\\5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}&\frac{2}{19}\\\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-16\\5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{19}\left(-16\right)+\frac{2}{19}\times 5\\\frac{2}{19}\left(-16\right)-\frac{5}{19}\times 5\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=-3
Tangohia ngā huānga poukapa x me y.
5x+2y=-16,2x-3y=5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 5x+2\times 2y=2\left(-16\right),5\times 2x+5\left(-3\right)y=5\times 5
Kia ōrite ai a 5x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
10x+4y=-32,10x-15y=25
Whakarūnātia.
10x-10x+4y+15y=-32-25
Me tango 10x-15y=25 mai i 10x+4y=-32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4y+15y=-32-25
Tāpiri 10x ki te -10x. Ka whakakore atu ngā kupu 10x me -10x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
19y=-32-25
Tāpiri 4y ki te 15y.
19y=-57
Tāpiri -32 ki te -25.
y=-3
Whakawehea ngā taha e rua ki te 19.
2x-3\left(-3\right)=5
Whakaurua te -3 mō y ki 2x-3y=5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+9=5
Whakareatia -3 ki te -3.
2x=-4
Me tango 9 mai i ngā taha e rua o te whārite.
x=-2
Whakawehea ngā taha e rua ki te 2.
x=-2,y=-3
Kua oti te pūnaha te whakatau.