Whakaoti mō x, y
x=-14
y=24
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x+3y-2=0,x+y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x+3y-2=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x+3y=2
Me tāpiri 2 ki ngā taha e rua o te whārite.
5x=-3y+2
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{5}\left(-3y+2\right)
Whakawehea ngā taha e rua ki te 5.
x=-\frac{3}{5}y+\frac{2}{5}
Whakareatia \frac{1}{5} ki te -3y+2.
-\frac{3}{5}y+\frac{2}{5}+y=10
Whakakapia te \frac{-3y+2}{5} mō te x ki tērā atu whārite, x+y=10.
\frac{2}{5}y+\frac{2}{5}=10
Tāpiri -\frac{3y}{5} ki te y.
\frac{2}{5}y=\frac{48}{5}
Me tango \frac{2}{5} mai i ngā taha e rua o te whārite.
y=24
Whakawehea ngā taha e rua o te whārite ki te \frac{2}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{5}\times 24+\frac{2}{5}
Whakaurua te 24 mō y ki x=-\frac{3}{5}y+\frac{2}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-72+2}{5}
Whakareatia -\frac{3}{5} ki te 24.
x=-14
Tāpiri \frac{2}{5} ki te -\frac{72}{5} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-14,y=24
Kua oti te pūnaha te whakatau.
5x+3y-2=0,x+y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}5&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&3\\1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&3\\1&1\end{matrix}\right))\left(\begin{matrix}2\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-3}&-\frac{3}{5-3}\\-\frac{1}{5-3}&\frac{5}{5-3}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&-\frac{3}{2}\\-\frac{1}{2}&\frac{5}{2}\end{matrix}\right)\left(\begin{matrix}2\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 2-\frac{3}{2}\times 10\\-\frac{1}{2}\times 2+\frac{5}{2}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\24\end{matrix}\right)
Mahia ngā tātaitanga.
x=-14,y=24
Tangohia ngā huānga poukapa x me y.
5x+3y-2=0,x+y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5x+3y-2=0,5x+5y=5\times 10
Kia ōrite ai a 5x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
5x+3y-2=0,5x+5y=50
Whakarūnātia.
5x-5x+3y-5y-2=-50
Me tango 5x+5y=50 mai i 5x+3y-2=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-5y-2=-50
Tāpiri 5x ki te -5x. Ka whakakore atu ngā kupu 5x me -5x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-2y-2=-50
Tāpiri 3y ki te -5y.
-2y=-48
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=24
Whakawehea ngā taha e rua ki te -2.
x+24=10
Whakaurua te 24 mō y ki x+y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-14
Me tango 24 mai i ngā taha e rua o te whārite.
x=-14,y=24
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}