Whakaoti mō u, x
x = \frac{5}{2} = 2\frac{1}{2} = 2.5
u = -\frac{5}{2} = -2\frac{1}{2} = -2.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
5u+x=-10,3u+3x=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5u+x=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te u mā te wehe i te u i te taha mauī o te tohu ōrite.
5u=-x-10
Me tango x mai i ngā taha e rua o te whārite.
u=\frac{1}{5}\left(-x-10\right)
Whakawehea ngā taha e rua ki te 5.
u=-\frac{1}{5}x-2
Whakareatia \frac{1}{5} ki te -x-10.
3\left(-\frac{1}{5}x-2\right)+3x=0
Whakakapia te -\frac{x}{5}-2 mō te u ki tērā atu whārite, 3u+3x=0.
-\frac{3}{5}x-6+3x=0
Whakareatia 3 ki te -\frac{x}{5}-2.
\frac{12}{5}x-6=0
Tāpiri -\frac{3x}{5} ki te 3x.
\frac{12}{5}x=6
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=\frac{5}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{12}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
u=-\frac{1}{5}\times \frac{5}{2}-2
Whakaurua te \frac{5}{2} mō x ki u=-\frac{1}{5}x-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
u=-\frac{1}{2}-2
Whakareatia -\frac{1}{5} ki te \frac{5}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
u=-\frac{5}{2}
Tāpiri -2 ki te -\frac{1}{2}.
u=-\frac{5}{2},x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
5u+x=-10,3u+3x=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\3&3\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-10\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\3&3\end{matrix}\right))\left(\begin{matrix}5&1\\3&3\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}u\\x\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\3&3\end{matrix}\right))\left(\begin{matrix}-10\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-3}&-\frac{1}{5\times 3-3}\\-\frac{3}{5\times 3-3}&\frac{5}{5\times 3-3}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{12}\\-\frac{1}{4}&\frac{5}{12}\end{matrix}\right)\left(\begin{matrix}-10\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-10\right)\\-\frac{1}{4}\left(-10\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}u\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2}\\\frac{5}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
u=-\frac{5}{2},x=\frac{5}{2}
Tangohia ngā huānga poukapa u me x.
5u+x=-10,3u+3x=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 5u+3x=3\left(-10\right),5\times 3u+5\times 3x=0
Kia ōrite ai a 5u me 3u, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
15u+3x=-30,15u+15x=0
Whakarūnātia.
15u-15u+3x-15x=-30
Me tango 15u+15x=0 mai i 15u+3x=-30 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3x-15x=-30
Tāpiri 15u ki te -15u. Ka whakakore atu ngā kupu 15u me -15u, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-12x=-30
Tāpiri 3x ki te -15x.
x=\frac{5}{2}
Whakawehea ngā taha e rua ki te -12.
3u+3\times \frac{5}{2}=0
Whakaurua te \frac{5}{2} mō x ki 3u+3x=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō u hāngai tonu.
3u+\frac{15}{2}=0
Whakareatia 3 ki te \frac{5}{2}.
3u=-\frac{15}{2}
Me tango \frac{15}{2} mai i ngā taha e rua o te whārite.
u=-\frac{5}{2}
Whakawehea ngā taha e rua ki te 3.
u=-\frac{5}{2},x=\frac{5}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}