Tīpoka ki ngā ihirangi matua
Whakaoti mō b, c
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5b+c=8,4b+4c=8
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5b+c=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te b mā te wehe i te b i te taha mauī o te tohu ōrite.
5b=-c+8
Me tango c mai i ngā taha e rua o te whārite.
b=\frac{1}{5}\left(-c+8\right)
Whakawehea ngā taha e rua ki te 5.
b=-\frac{1}{5}c+\frac{8}{5}
Whakareatia \frac{1}{5} ki te -c+8.
4\left(-\frac{1}{5}c+\frac{8}{5}\right)+4c=8
Whakakapia te \frac{-c+8}{5} mō te b ki tērā atu whārite, 4b+4c=8.
-\frac{4}{5}c+\frac{32}{5}+4c=8
Whakareatia 4 ki te \frac{-c+8}{5}.
\frac{16}{5}c+\frac{32}{5}=8
Tāpiri -\frac{4c}{5} ki te 4c.
\frac{16}{5}c=\frac{8}{5}
Me tango \frac{32}{5} mai i ngā taha e rua o te whārite.
c=\frac{1}{2}
Whakawehea ngā taha e rua o te whārite ki te \frac{16}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
b=-\frac{1}{5}\times \frac{1}{2}+\frac{8}{5}
Whakaurua te \frac{1}{2} mō c ki b=-\frac{1}{5}c+\frac{8}{5}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=-\frac{1}{10}+\frac{8}{5}
Whakareatia -\frac{1}{5} ki te \frac{1}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
b=\frac{3}{2}
Tāpiri \frac{8}{5} ki te -\frac{1}{10} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
b=\frac{3}{2},c=\frac{1}{2}
Kua oti te pūnaha te whakatau.
5b+c=8,4b+4c=8
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&1\\4&4\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}8\\8\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}5&1\\4&4\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&1\\4&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\4&4\end{matrix}\right))\left(\begin{matrix}8\\8\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{4}{5\times 4-4}&-\frac{1}{5\times 4-4}\\-\frac{4}{5\times 4-4}&\frac{5}{5\times 4-4}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{16}\\-\frac{1}{4}&\frac{5}{16}\end{matrix}\right)\left(\begin{matrix}8\\8\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8-\frac{1}{16}\times 8\\-\frac{1}{4}\times 8+\frac{5}{16}\times 8\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}\\\frac{1}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
b=\frac{3}{2},c=\frac{1}{2}
Tangohia ngā huānga poukapa b me c.
5b+c=8,4b+4c=8
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4\times 5b+4c=4\times 8,5\times 4b+5\times 4c=5\times 8
Kia ōrite ai a 5b me 4b, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
20b+4c=32,20b+20c=40
Whakarūnātia.
20b-20b+4c-20c=32-40
Me tango 20b+20c=40 mai i 20b+4c=32 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4c-20c=32-40
Tāpiri 20b ki te -20b. Ka whakakore atu ngā kupu 20b me -20b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16c=32-40
Tāpiri 4c ki te -20c.
-16c=-8
Tāpiri 32 ki te -40.
c=\frac{1}{2}
Whakawehea ngā taha e rua ki te -16.
4b+4\times \frac{1}{2}=8
Whakaurua te \frac{1}{2} mō c ki 4b+4c=8. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
4b+2=8
Whakareatia 4 ki te \frac{1}{2}.
4b=6
Me tango 2 mai i ngā taha e rua o te whārite.
b=\frac{3}{2}
Whakawehea ngā taha e rua ki te 4.
b=\frac{3}{2},c=\frac{1}{2}
Kua oti te pūnaha te whakatau.