Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

5x+10=4y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
5x+10-4y=0
Tangohia te 4y mai i ngā taha e rua.
5x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3y-12=6x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-4.
3y-12-6x=0
Tangohia te 6x mai i ngā taha e rua.
3y-6x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x-4y=-10,-6x+3y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
5x-4y=-10
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
5x=4y-10
Me tāpiri 4y ki ngā taha e rua o te whārite.
x=\frac{1}{5}\left(4y-10\right)
Whakawehea ngā taha e rua ki te 5.
x=\frac{4}{5}y-2
Whakareatia \frac{1}{5} ki te 4y-10.
-6\left(\frac{4}{5}y-2\right)+3y=12
Whakakapia te \frac{4y}{5}-2 mō te x ki tērā atu whārite, -6x+3y=12.
-\frac{24}{5}y+12+3y=12
Whakareatia -6 ki te \frac{4y}{5}-2.
-\frac{9}{5}y+12=12
Tāpiri -\frac{24y}{5} ki te 3y.
-\frac{9}{5}y=0
Me tango 12 mai i ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-2
Whakaurua te 0 mō y ki x=\frac{4}{5}y-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2,y=0
Kua oti te pūnaha te whakatau.
5x+10=4y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
5x+10-4y=0
Tangohia te 4y mai i ngā taha e rua.
5x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3y-12=6x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-4.
3y-12-6x=0
Tangohia te 6x mai i ngā taha e rua.
3y-6x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x-4y=-10,-6x+3y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}5&-4\\-6&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-4\\-6&3\end{matrix}\right))\left(\begin{matrix}-10\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5\times 3-\left(-4\left(-6\right)\right)}&-\frac{-4}{5\times 3-\left(-4\left(-6\right)\right)}\\-\frac{-6}{5\times 3-\left(-4\left(-6\right)\right)}&\frac{5}{5\times 3-\left(-4\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}&-\frac{4}{9}\\-\frac{2}{3}&-\frac{5}{9}\end{matrix}\right)\left(\begin{matrix}-10\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3}\left(-10\right)-\frac{4}{9}\times 12\\-\frac{2}{3}\left(-10\right)-\frac{5}{9}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=-2,y=0
Tangohia ngā huānga poukapa x me y.
5x+10=4y
Whakaarohia te whārite tuatahi. Whakamahia te āhuatanga tohatoha hei whakarea te 5 ki te x+2.
5x+10-4y=0
Tangohia te 4y mai i ngā taha e rua.
5x-4y=-10
Tangohia te 10 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
3y-12=6x
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 3 ki te y-4.
3y-12-6x=0
Tangohia te 6x mai i ngā taha e rua.
3y-6x=12
Me tāpiri te 12 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
5x-4y=-10,-6x+3y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-6\times 5x-6\left(-4\right)y=-6\left(-10\right),5\left(-6\right)x+5\times 3y=5\times 12
Kia ōrite ai a 5x me -6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 5.
-30x+24y=60,-30x+15y=60
Whakarūnātia.
-30x+30x+24y-15y=60-60
Me tango -30x+15y=60 mai i -30x+24y=60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
24y-15y=60-60
Tāpiri -30x ki te 30x. Ka whakakore atu ngā kupu -30x me 30x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
9y=60-60
Tāpiri 24y ki te -15y.
9y=0
Tāpiri 60 ki te -60.
y=0
Whakawehea ngā taha e rua ki te 9.
-6x=12
Whakaurua te 0 mō y ki -6x+3y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-2
Whakawehea ngā taha e rua ki te -6.
x=-2,y=0
Kua oti te pūnaha te whakatau.