Whakaoti mō x, y
x=\frac{1}{4}=0.25
y=1
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-y=0
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 5. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x+12=13y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
4x+12-13y=0
Tangohia te 13y mai i ngā taha e rua.
4x-13y=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-y=0,4x-13y=-12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}y
Whakawehea ngā taha e rua ki te 4.
4\times \frac{1}{4}y-13y=-12
Whakakapia te \frac{y}{4} mō te x ki tērā atu whārite, 4x-13y=-12.
y-13y=-12
Whakareatia 4 ki te \frac{y}{4}.
-12y=-12
Tāpiri y ki te -13y.
y=1
Whakawehea ngā taha e rua ki te -12.
x=\frac{1}{4}
Whakaurua te 1 mō y ki x=\frac{1}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1}{4},y=1
Kua oti te pūnaha te whakatau.
4x-y=0
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 5. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x+12=13y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
4x+12-13y=0
Tangohia te 13y mai i ngā taha e rua.
4x-13y=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-y=0,4x-13y=-12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right))\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right))\left(\begin{matrix}0\\-12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\4&-13\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right))\left(\begin{matrix}0\\-12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\4&-13\end{matrix}\right))\left(\begin{matrix}0\\-12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{13}{4\left(-13\right)-\left(-4\right)}&-\frac{-1}{4\left(-13\right)-\left(-4\right)}\\-\frac{4}{4\left(-13\right)-\left(-4\right)}&\frac{4}{4\left(-13\right)-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}0\\-12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{13}{48}&-\frac{1}{48}\\\frac{1}{12}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}0\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{48}\left(-12\right)\\-\frac{1}{12}\left(-12\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{4},y=1
Tangohia ngā huānga poukapa x me y.
4x-y=0
Whakaarohia te whārite tuatahi. Whakawehea ngā taha e rua ki te 5. Ko te kore i whakawehea ki te tau ehara te kore ka hua ko te kore.
4x+12=13y
Whakaarohia te whārite tuarua. Whakamahia te āhuatanga tohatoha hei whakarea te 4 ki te x+3.
4x+12-13y=0
Tangohia te 13y mai i ngā taha e rua.
4x-13y=-12
Tangohia te 12 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-y=0,4x-13y=-12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-4x-y+13y=12
Me tango 4x-13y=-12 mai i 4x-y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-y+13y=12
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
12y=12
Tāpiri -y ki te 13y.
y=1
Whakawehea ngā taha e rua ki te 12.
4x-13=-12
Whakaurua te 1 mō y ki 4x-13y=-12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
4x=1
Me tāpiri 13 ki ngā taha e rua o te whārite.
x=\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4},y=1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}