\left. \begin{array} { l } { 5 \times 10 ^ { 3 } + 7 \times 10 ^ { 2 } + 1 \times 10 ^ { 1 } + 4 } \\ { 6 \times 10 ^ { 4 } + 3 \times 10 ^ { 3 } + 1 \times 10 ^ { 2 } + 8 \times 10 ^ { 1 } + 5 } \\ { 8 \times 10 ^ { 5 } + 0 \times 10 ^ { 4 } + 7 \times 10 ^ { 3 } + 3 \times 10 ^ { 2 } + 5 \times 10 ^ { 1 } + 6 } \end{array} \right.
Kōmaka
5714,\ 63185,\ 807356
Aromātai
5714,\ 63185,\ 807356
Tohaina
Kua tāruatia ki te papatopenga
sort(5\times 1000+7\times 10^{2}+1\times 10^{1}+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
sort(5000+7\times 10^{2}+1\times 10^{1}+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 5 ki te 1000, ka 5000.
sort(5000+7\times 100+1\times 10^{1}+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
sort(5000+700+1\times 10^{1}+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 7 ki te 100, ka 700.
sort(5700+1\times 10^{1}+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 5000 ki te 700, ka 5700.
sort(5700+1\times 10+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
sort(5700+10+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 1 ki te 10, ka 10.
sort(5710+4,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 5700 ki te 10, ka 5710.
sort(5714,6\times 10^{4}+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 5710 ki te 4, ka 5714.
sort(5714,6\times 10000+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 4, kia riro ko 10000.
sort(5714,60000+3\times 10^{3}+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 6 ki te 10000, ka 60000.
sort(5714,60000+3\times 1000+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
sort(5714,60000+3000+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 3 ki te 1000, ka 3000.
sort(5714,63000+1\times 10^{2}+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 60000 ki te 3000, ka 63000.
sort(5714,63000+1\times 100+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
sort(5714,63000+100+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 1 ki te 100, ka 100.
sort(5714,63100+8\times 10^{1}+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 63000 ki te 100, ka 63100.
sort(5714,63100+8\times 10+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
sort(5714,63100+80+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 8 ki te 10, ka 80.
sort(5714,63180+5,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 63100 ki te 80, ka 63180.
sort(5714,63185,8\times 10^{5}+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 63180 ki te 5, ka 63185.
sort(5714,63185,8\times 100000+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 5, kia riro ko 100000.
sort(5714,63185,800000+0\times 10^{4}+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 8 ki te 100000, ka 800000.
sort(5714,63185,800000+0\times 10000+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 4, kia riro ko 10000.
sort(5714,63185,800000+0+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 0 ki te 10000, ka 0.
sort(5714,63185,800000+7\times 10^{3}+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 800000 ki te 0, ka 800000.
sort(5714,63185,800000+7\times 1000+3\times 10^{2}+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 3, kia riro ko 1000.
sort(5714,63185,800000+7000+3\times 10^{2}+5\times 10^{1}+6)
Whakareatia te 7 ki te 1000, ka 7000.
sort(5714,63185,807000+3\times 10^{2}+5\times 10^{1}+6)
Tāpirihia te 800000 ki te 7000, ka 807000.
sort(5714,63185,807000+3\times 100+5\times 10^{1}+6)
Tātaihia te 10 mā te pū o 2, kia riro ko 100.
sort(5714,63185,807000+300+5\times 10^{1}+6)
Whakareatia te 3 ki te 100, ka 300.
sort(5714,63185,807300+5\times 10^{1}+6)
Tāpirihia te 807000 ki te 300, ka 807300.
sort(5714,63185,807300+5\times 10+6)
Tātaihia te 10 mā te pū o 1, kia riro ko 10.
sort(5714,63185,807300+50+6)
Whakareatia te 5 ki te 10, ka 50.
sort(5714,63185,807350+6)
Tāpirihia te 807300 ki te 50, ka 807350.
sort(5714,63185,807356)
Tāpirihia te 807350 ki te 6, ka 807356.
5714,63185,807356
Kei te raupapa kē ngā uara rārangi.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}