Whakaoti mō x, y
x=200
y=95
Graph
Tohaina
Kua tāruatia ki te papatopenga
45+0.25x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
0.25x-y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
35+0.3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
0.3x-y=-35
Tangohia te 35 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
0.25x-y=-45,0.3x-y=-35
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
0.25x-y=-45
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
0.25x=y-45
Me tāpiri y ki ngā taha e rua o te whārite.
x=4\left(y-45\right)
Me whakarea ngā taha e rua ki te 4.
x=4y-180
Whakareatia 4 ki te y-45.
0.3\left(4y-180\right)-y=-35
Whakakapia te -180+4y mō te x ki tērā atu whārite, 0.3x-y=-35.
1.2y-54-y=-35
Whakareatia 0.3 ki te -180+4y.
0.2y-54=-35
Tāpiri \frac{6y}{5} ki te -y.
0.2y=19
Me tāpiri 54 ki ngā taha e rua o te whārite.
y=95
Me whakarea ngā taha e rua ki te 5.
x=4\times 95-180
Whakaurua te 95 mō y ki x=4y-180. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=380-180
Whakareatia 4 ki te 95.
x=200
Tāpiri -180 ki te 380.
x=200,y=95
Kua oti te pūnaha te whakatau.
45+0.25x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
0.25x-y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
35+0.3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
0.3x-y=-35
Tangohia te 35 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
0.25x-y=-45,0.3x-y=-35
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-45\\-35\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right))\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right))\left(\begin{matrix}-45\\-35\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right))\left(\begin{matrix}-45\\-35\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}0.25&-1\\0.3&-1\end{matrix}\right))\left(\begin{matrix}-45\\-35\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{0.25\left(-1\right)-\left(-0.3\right)}&-\frac{-1}{0.25\left(-1\right)-\left(-0.3\right)}\\-\frac{0.3}{0.25\left(-1\right)-\left(-0.3\right)}&\frac{0.25}{0.25\left(-1\right)-\left(-0.3\right)}\end{matrix}\right)\left(\begin{matrix}-45\\-35\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20&20\\-6&5\end{matrix}\right)\left(\begin{matrix}-45\\-35\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-20\left(-45\right)+20\left(-35\right)\\-6\left(-45\right)+5\left(-35\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}200\\95\end{matrix}\right)
Mahia ngā tātaitanga.
x=200,y=95
Tangohia ngā huānga poukapa x me y.
45+0.25x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
0.25x-y=-45
Tangohia te 45 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
35+0.3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
0.3x-y=-35
Tangohia te 35 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
0.25x-y=-45,0.3x-y=-35
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
0.25x-0.3x-y+y=-45+35
Me tango 0.3x-y=-35 mai i 0.25x-y=-45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
0.25x-0.3x=-45+35
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-0.05x=-45+35
Tāpiri \frac{x}{4} ki te -\frac{3x}{10}.
-0.05x=-10
Tāpiri -45 ki te 35.
x=200
Me whakarea ngā taha e rua ki te -20.
0.3\times 200-y=-35
Whakaurua te 200 mō x ki 0.3x-y=-35. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
60-y=-35
Whakareatia 0.3 ki te 200.
-y=-95
Me tango 60 mai i ngā taha e rua o te whārite.
y=95
Whakawehea ngā taha e rua ki te -1.
x=200,y=95
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}