Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

41x+53y=135,53x+41y=147
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
41x+53y=135
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
41x=-53y+135
Me tango 53y mai i ngā taha e rua o te whārite.
x=\frac{1}{41}\left(-53y+135\right)
Whakawehea ngā taha e rua ki te 41.
x=-\frac{53}{41}y+\frac{135}{41}
Whakareatia \frac{1}{41} ki te -53y+135.
53\left(-\frac{53}{41}y+\frac{135}{41}\right)+41y=147
Whakakapia te \frac{-53y+135}{41} mō te x ki tērā atu whārite, 53x+41y=147.
-\frac{2809}{41}y+\frac{7155}{41}+41y=147
Whakareatia 53 ki te \frac{-53y+135}{41}.
-\frac{1128}{41}y+\frac{7155}{41}=147
Tāpiri -\frac{2809y}{41} ki te 41y.
-\frac{1128}{41}y=-\frac{1128}{41}
Me tango \frac{7155}{41} mai i ngā taha e rua o te whārite.
y=1
Whakawehea ngā taha e rua o te whārite ki te -\frac{1128}{41}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{-53+135}{41}
Whakaurua te 1 mō y ki x=-\frac{53}{41}y+\frac{135}{41}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=2
Tāpiri \frac{135}{41} ki te -\frac{53}{41} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=1
Kua oti te pūnaha te whakatau.
41x+53y=135,53x+41y=147
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}41&53\\53&41\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}135\\147\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}41&53\\53&41\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}41&53\\53&41\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}41&53\\53&41\end{matrix}\right))\left(\begin{matrix}135\\147\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{41}{41\times 41-53\times 53}&-\frac{53}{41\times 41-53\times 53}\\-\frac{53}{41\times 41-53\times 53}&\frac{41}{41\times 41-53\times 53}\end{matrix}\right)\left(\begin{matrix}135\\147\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{41}{1128}&\frac{53}{1128}\\\frac{53}{1128}&-\frac{41}{1128}\end{matrix}\right)\left(\begin{matrix}135\\147\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{41}{1128}\times 135+\frac{53}{1128}\times 147\\\frac{53}{1128}\times 135-\frac{41}{1128}\times 147\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=1
Tangohia ngā huānga poukapa x me y.
41x+53y=135,53x+41y=147
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
53\times 41x+53\times 53y=53\times 135,41\times 53x+41\times 41y=41\times 147
Kia ōrite ai a 41x me 53x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 53 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 41.
2173x+2809y=7155,2173x+1681y=6027
Whakarūnātia.
2173x-2173x+2809y-1681y=7155-6027
Me tango 2173x+1681y=6027 mai i 2173x+2809y=7155 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2809y-1681y=7155-6027
Tāpiri 2173x ki te -2173x. Ka whakakore atu ngā kupu 2173x me -2173x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1128y=7155-6027
Tāpiri 2809y ki te -1681y.
1128y=1128
Tāpiri 7155 ki te -6027.
y=1
Whakawehea ngā taha e rua ki te 1128.
53x+41=147
Whakaurua te 1 mō y ki 53x+41y=147. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
53x=106
Me tango 41 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 53.
x=2,y=1
Kua oti te pūnaha te whakatau.