Whakaoti mō x, y
x = \frac{299}{158} = 1\frac{141}{158} \approx 1.892405063
y = \frac{85}{79} = 1\frac{6}{79} \approx 1.075949367
Graph
Tohaina
Kua tāruatia ki te papatopenga
40x+4y=80,8x-15y=-1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
40x+4y=80
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
40x=-4y+80
Me tango 4y mai i ngā taha e rua o te whārite.
x=\frac{1}{40}\left(-4y+80\right)
Whakawehea ngā taha e rua ki te 40.
x=-\frac{1}{10}y+2
Whakareatia \frac{1}{40} ki te -4y+80.
8\left(-\frac{1}{10}y+2\right)-15y=-1
Whakakapia te -\frac{y}{10}+2 mō te x ki tērā atu whārite, 8x-15y=-1.
-\frac{4}{5}y+16-15y=-1
Whakareatia 8 ki te -\frac{y}{10}+2.
-\frac{79}{5}y+16=-1
Tāpiri -\frac{4y}{5} ki te -15y.
-\frac{79}{5}y=-17
Me tango 16 mai i ngā taha e rua o te whārite.
y=\frac{85}{79}
Whakawehea ngā taha e rua o te whārite ki te -\frac{79}{5}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{10}\times \frac{85}{79}+2
Whakaurua te \frac{85}{79} mō y ki x=-\frac{1}{10}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{17}{158}+2
Whakareatia -\frac{1}{10} ki te \frac{85}{79} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{299}{158}
Tāpiri 2 ki te -\frac{17}{158}.
x=\frac{299}{158},y=\frac{85}{79}
Kua oti te pūnaha te whakatau.
40x+4y=80,8x-15y=-1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}40&4\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}80\\-1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}40&4\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}40&4\\8&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&4\\8&-15\end{matrix}\right))\left(\begin{matrix}80\\-1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{40\left(-15\right)-4\times 8}&-\frac{4}{40\left(-15\right)-4\times 8}\\-\frac{8}{40\left(-15\right)-4\times 8}&\frac{40}{40\left(-15\right)-4\times 8}\end{matrix}\right)\left(\begin{matrix}80\\-1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{632}&\frac{1}{158}\\\frac{1}{79}&-\frac{5}{79}\end{matrix}\right)\left(\begin{matrix}80\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{632}\times 80+\frac{1}{158}\left(-1\right)\\\frac{1}{79}\times 80-\frac{5}{79}\left(-1\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{299}{158}\\\frac{85}{79}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{299}{158},y=\frac{85}{79}
Tangohia ngā huānga poukapa x me y.
40x+4y=80,8x-15y=-1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 40x+8\times 4y=8\times 80,40\times 8x+40\left(-15\right)y=40\left(-1\right)
Kia ōrite ai a 40x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 40.
320x+32y=640,320x-600y=-40
Whakarūnātia.
320x-320x+32y+600y=640+40
Me tango 320x-600y=-40 mai i 320x+32y=640 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
32y+600y=640+40
Tāpiri 320x ki te -320x. Ka whakakore atu ngā kupu 320x me -320x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
632y=640+40
Tāpiri 32y ki te 600y.
632y=680
Tāpiri 640 ki te 40.
y=\frac{85}{79}
Whakawehea ngā taha e rua ki te 632.
8x-15\times \frac{85}{79}=-1
Whakaurua te \frac{85}{79} mō y ki 8x-15y=-1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-\frac{1275}{79}=-1
Whakareatia -15 ki te \frac{85}{79}.
8x=\frac{1196}{79}
Me tāpiri \frac{1275}{79} ki ngā taha e rua o te whārite.
x=\frac{299}{158}
Whakawehea ngā taha e rua ki te 8.
x=\frac{299}{158},y=\frac{85}{79}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}