Whakaoti mō x, y
x = \frac{35}{4} = 8\frac{3}{4} = 8.75
y=5
Graph
Tohaina
Kua tāruatia ki te papatopenga
40x+30y=500,60x+15y=600
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
40x+30y=500
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
40x=-30y+500
Me tango 30y mai i ngā taha e rua o te whārite.
x=\frac{1}{40}\left(-30y+500\right)
Whakawehea ngā taha e rua ki te 40.
x=-\frac{3}{4}y+\frac{25}{2}
Whakareatia \frac{1}{40} ki te -30y+500.
60\left(-\frac{3}{4}y+\frac{25}{2}\right)+15y=600
Whakakapia te -\frac{3y}{4}+\frac{25}{2} mō te x ki tērā atu whārite, 60x+15y=600.
-45y+750+15y=600
Whakareatia 60 ki te -\frac{3y}{4}+\frac{25}{2}.
-30y+750=600
Tāpiri -45y ki te 15y.
-30y=-150
Me tango 750 mai i ngā taha e rua o te whārite.
y=5
Whakawehea ngā taha e rua ki te -30.
x=-\frac{3}{4}\times 5+\frac{25}{2}
Whakaurua te 5 mō y ki x=-\frac{3}{4}y+\frac{25}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{15}{4}+\frac{25}{2}
Whakareatia -\frac{3}{4} ki te 5.
x=\frac{35}{4}
Tāpiri \frac{25}{2} ki te -\frac{15}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{35}{4},y=5
Kua oti te pūnaha te whakatau.
40x+30y=500,60x+15y=600
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}40&30\\60&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}500\\600\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}40&30\\60&15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}40&30\\60&15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}40&30\\60&15\end{matrix}\right))\left(\begin{matrix}500\\600\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{15}{40\times 15-30\times 60}&-\frac{30}{40\times 15-30\times 60}\\-\frac{60}{40\times 15-30\times 60}&\frac{40}{40\times 15-30\times 60}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}&\frac{1}{40}\\\frac{1}{20}&-\frac{1}{30}\end{matrix}\right)\left(\begin{matrix}500\\600\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{80}\times 500+\frac{1}{40}\times 600\\\frac{1}{20}\times 500-\frac{1}{30}\times 600\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{35}{4}\\5\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{35}{4},y=5
Tangohia ngā huānga poukapa x me y.
40x+30y=500,60x+15y=600
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
60\times 40x+60\times 30y=60\times 500,40\times 60x+40\times 15y=40\times 600
Kia ōrite ai a 40x me 60x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 60 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 40.
2400x+1800y=30000,2400x+600y=24000
Whakarūnātia.
2400x-2400x+1800y-600y=30000-24000
Me tango 2400x+600y=24000 mai i 2400x+1800y=30000 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
1800y-600y=30000-24000
Tāpiri 2400x ki te -2400x. Ka whakakore atu ngā kupu 2400x me -2400x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
1200y=30000-24000
Tāpiri 1800y ki te -600y.
1200y=6000
Tāpiri 30000 ki te -24000.
y=5
Whakawehea ngā taha e rua ki te 1200.
60x+15\times 5=600
Whakaurua te 5 mō y ki 60x+15y=600. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
60x+75=600
Whakareatia 15 ki te 5.
60x=525
Me tango 75 mai i ngā taha e rua o te whārite.
x=\frac{35}{4}
Whakawehea ngā taha e rua ki te 60.
x=\frac{35}{4},y=5
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}