Whakaoti mō y, x
x=6
y=-10
Graph
Tohaina
Kua tāruatia ki te papatopenga
x+4y=-34
Whakaarohia te whārite tuarua. Me tāpiri te 4y ki ngā taha e rua.
4y-5x=-70,4y+x=-34
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4y-5x=-70
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
4y=5x-70
Me tāpiri 5x ki ngā taha e rua o te whārite.
y=\frac{1}{4}\left(5x-70\right)
Whakawehea ngā taha e rua ki te 4.
y=\frac{5}{4}x-\frac{35}{2}
Whakareatia \frac{1}{4} ki te -70+5x.
4\left(\frac{5}{4}x-\frac{35}{2}\right)+x=-34
Whakakapia te -\frac{35}{2}+\frac{5x}{4} mō te y ki tērā atu whārite, 4y+x=-34.
5x-70+x=-34
Whakareatia 4 ki te -\frac{35}{2}+\frac{5x}{4}.
6x-70=-34
Tāpiri 5x ki te x.
6x=36
Me tāpiri 70 ki ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 6.
y=\frac{5}{4}\times 6-\frac{35}{2}
Whakaurua te 6 mō x ki y=\frac{5}{4}x-\frac{35}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=\frac{15-35}{2}
Whakareatia \frac{5}{4} ki te 6.
y=-10
Tāpiri -\frac{35}{2} ki te \frac{15}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
y=-10,x=6
Kua oti te pūnaha te whakatau.
x+4y=-34
Whakaarohia te whārite tuarua. Me tāpiri te 4y ki ngā taha e rua.
4y-5x=-70,4y+x=-34
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-5\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-70\\-34\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}4&-5\\4&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-5\\4&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\4&1\end{matrix}\right))\left(\begin{matrix}-70\\-34\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-5\times 4\right)}&-\frac{-5}{4-\left(-5\times 4\right)}\\-\frac{4}{4-\left(-5\times 4\right)}&\frac{4}{4-\left(-5\times 4\right)}\end{matrix}\right)\left(\begin{matrix}-70\\-34\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}&\frac{5}{24}\\-\frac{1}{6}&\frac{1}{6}\end{matrix}\right)\left(\begin{matrix}-70\\-34\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{24}\left(-70\right)+\frac{5}{24}\left(-34\right)\\-\frac{1}{6}\left(-70\right)+\frac{1}{6}\left(-34\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-10\\6\end{matrix}\right)
Mahia ngā tātaitanga.
y=-10,x=6
Tangohia ngā huānga poukapa y me x.
x+4y=-34
Whakaarohia te whārite tuarua. Me tāpiri te 4y ki ngā taha e rua.
4y-5x=-70,4y+x=-34
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4y-4y-5x-x=-70+34
Me tango 4y+x=-34 mai i 4y-5x=-70 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5x-x=-70+34
Tāpiri 4y ki te -4y. Ka whakakore atu ngā kupu 4y me -4y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6x=-70+34
Tāpiri -5x ki te -x.
-6x=-36
Tāpiri -70 ki te 34.
x=6
Whakawehea ngā taha e rua ki te -6.
4y+6=-34
Whakaurua te 6 mō x ki 4y+x=-34. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
4y=-40
Me tango 6 mai i ngā taha e rua o te whārite.
y=-10
Whakawehea ngā taha e rua ki te 4.
y=-10,x=6
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}