Whakaoti mō x, y (complex solution)
\left\{\begin{matrix}\\x=0\text{, }y=2\text{, }&\text{unconditionally}\\x=\frac{4\left(y-2\right)}{3}\text{, }y\in \mathrm{C}\text{, }&a=\frac{3}{2}\end{matrix}\right.
Whakaoti mō x, y
\left\{\begin{matrix}\\x=0\text{, }y=2\text{, }&\text{unconditionally}\\x=\frac{4\left(y-2\right)}{3}\text{, }y\in \mathrm{R}\text{, }&a=\frac{3}{2}\end{matrix}\right.
Graph
Tohaina
Kua tāruatia ki te papatopenga
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4y-3x=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
4y=3x+8
Me tāpiri 3x ki ngā taha e rua o te whārite.
y=\frac{1}{4}\left(3x+8\right)
Whakawehea ngā taha e rua ki te 4.
y=\frac{3}{4}x+2
Whakareatia \frac{1}{4} ki te 3x+8.
-2\left(\frac{3}{4}x+2\right)+ax=-4
Whakakapia te \frac{3x}{4}+2 mō te y ki tērā atu whārite, -2y+ax=-4.
-\frac{3}{2}x-4+ax=-4
Whakareatia -2 ki te \frac{3x}{4}+2.
\left(a-\frac{3}{2}\right)x-4=-4
Tāpiri -\frac{3x}{2} ki te ax.
\left(a-\frac{3}{2}\right)x=0
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -\frac{3}{2}+a.
y=2
Whakaurua te 0 mō x ki y=\frac{3}{4}x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2,x=0
Kua oti te pūnaha te whakatau.
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-3\\-2&a\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{4a-\left(-3\left(-2\right)\right)}&-\frac{-3}{4a-\left(-3\left(-2\right)\right)}\\-\frac{-2}{4a-\left(-3\left(-2\right)\right)}&\frac{4}{4a-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}&\frac{3}{2\left(2a-3\right)}\\\frac{1}{2a-3}&\frac{2}{2a-3}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}\times 8+\frac{3}{2\left(2a-3\right)}\left(-4\right)\\\frac{1}{2a-3}\times 8+\frac{2}{2a-3}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
y=2,x=0
Tangohia ngā huānga poukapa y me x.
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 4y-2\left(-3\right)x=-2\times 8,4\left(-2\right)y+4ax=4\left(-4\right)
Kia ōrite ai a 4y me -2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-8y+6x=-16,-8y+4ax=-16
Whakarūnātia.
-8y+8y+6x+\left(-4a\right)x=-16+16
Me tango -8y+4ax=-16 mai i -8y+6x=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6x+\left(-4a\right)x=-16+16
Tāpiri -8y ki te 8y. Ka whakakore atu ngā kupu -8y me 8y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(6-4a\right)x=-16+16
Tāpiri 6x ki te -4ax.
\left(6-4a\right)x=0
Tāpiri -16 ki te 16.
x=0
Whakawehea ngā taha e rua ki te 6-4a.
-2y=-4
Whakaurua te 0 mō x ki -2y+ax=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2
Whakawehea ngā taha e rua ki te -2.
y=2,x=0
Kua oti te pūnaha te whakatau.
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4y-3x=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te y mā te wehe i te y i te taha mauī o te tohu ōrite.
4y=3x+8
Me tāpiri 3x ki ngā taha e rua o te whārite.
y=\frac{1}{4}\left(3x+8\right)
Whakawehea ngā taha e rua ki te 4.
y=\frac{3}{4}x+2
Whakareatia \frac{1}{4} ki te 3x+8.
-2\left(\frac{3}{4}x+2\right)+ax=-4
Whakakapia te \frac{3x}{4}+2 mō te y ki tērā atu whārite, -2y+ax=-4.
-\frac{3}{2}x-4+ax=-4
Whakareatia -2 ki te \frac{3x}{4}+2.
\left(a-\frac{3}{2}\right)x-4=-4
Tāpiri -\frac{3x}{2} ki te ax.
\left(a-\frac{3}{2}\right)x=0
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=0
Whakawehea ngā taha e rua ki te -\frac{3}{2}+a.
y=2
Whakaurua te 0 mō x ki y=\frac{3}{4}x+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2,x=0
Kua oti te pūnaha te whakatau.
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}8\\-4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-3\\-2&a\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-2&a\end{matrix}\right))\left(\begin{matrix}8\\-4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{4a-\left(-3\left(-2\right)\right)}&-\frac{-3}{4a-\left(-3\left(-2\right)\right)}\\-\frac{-2}{4a-\left(-3\left(-2\right)\right)}&\frac{4}{4a-\left(-3\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}&\frac{3}{2\left(2a-3\right)}\\\frac{1}{2a-3}&\frac{2}{2a-3}\end{matrix}\right)\left(\begin{matrix}8\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{a}{2\left(2a-3\right)}\times 8+\frac{3}{2\left(2a-3\right)}\left(-4\right)\\\frac{1}{2a-3}\times 8+\frac{2}{2a-3}\left(-4\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}2\\0\end{matrix}\right)
Mahia ngā tātaitanga.
y=2,x=0
Tangohia ngā huānga poukapa y me x.
ax+4-2y=0
Whakaarohia te whārite tuarua. Tangohia te 2y mai i ngā taha e rua.
ax-2y=-4
Tangohia te 4 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4y-3x=8,-2y+ax=-4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-2\times 4y-2\left(-3\right)x=-2\times 8,4\left(-2\right)y+4ax=4\left(-4\right)
Kia ōrite ai a 4y me -2y, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-8y+6x=-16,-8y+4ax=-16
Whakarūnātia.
-8y+8y+6x+\left(-4a\right)x=-16+16
Me tango -8y+4ax=-16 mai i -8y+6x=-16 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6x+\left(-4a\right)x=-16+16
Tāpiri -8y ki te 8y. Ka whakakore atu ngā kupu -8y me 8y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
\left(6-4a\right)x=-16+16
Tāpiri 6x ki te -4ax.
\left(6-4a\right)x=0
Tāpiri -16 ki te 16.
x=0
Whakawehea ngā taha e rua ki te 6-4a.
-2y=-4
Whakaurua te 0 mō x ki -2y+ax=-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=2
Whakawehea ngā taha e rua ki te -2.
y=2,x=0
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}