Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-y=22,3x+4y=26
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=22
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y+22
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(y+22\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{4}y+\frac{11}{2}
Whakareatia \frac{1}{4} ki te y+22.
3\left(\frac{1}{4}y+\frac{11}{2}\right)+4y=26
Whakakapia te \frac{y}{4}+\frac{11}{2} mō te x ki tērā atu whārite, 3x+4y=26.
\frac{3}{4}y+\frac{33}{2}+4y=26
Whakareatia 3 ki te \frac{y}{4}+\frac{11}{2}.
\frac{19}{4}y+\frac{33}{2}=26
Tāpiri \frac{3y}{4} ki te 4y.
\frac{19}{4}y=\frac{19}{2}
Me tango \frac{33}{2} mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te \frac{19}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{4}\times 2+\frac{11}{2}
Whakaurua te 2 mō y ki x=\frac{1}{4}y+\frac{11}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{1+11}{2}
Whakareatia \frac{1}{4} ki te 2.
x=6
Tāpiri \frac{11}{2} ki te \frac{1}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=6,y=2
Kua oti te pūnaha te whakatau.
4x-y=22,3x+4y=26
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}22\\26\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}4&-1\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&4\end{matrix}\right))\left(\begin{matrix}22\\26\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-\left(-3\right)}&-\frac{-1}{4\times 4-\left(-3\right)}\\-\frac{3}{4\times 4-\left(-3\right)}&\frac{4}{4\times 4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}22\\26\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}&\frac{1}{19}\\-\frac{3}{19}&\frac{4}{19}\end{matrix}\right)\left(\begin{matrix}22\\26\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{19}\times 22+\frac{1}{19}\times 26\\-\frac{3}{19}\times 22+\frac{4}{19}\times 26\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=6,y=2
Tangohia ngā huānga poukapa x me y.
4x-y=22,3x+4y=26
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-1\right)y=3\times 22,4\times 3x+4\times 4y=4\times 26
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-3y=66,12x+16y=104
Whakarūnātia.
12x-12x-3y-16y=66-104
Me tango 12x+16y=104 mai i 12x-3y=66 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y-16y=66-104
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-19y=66-104
Tāpiri -3y ki te -16y.
-19y=-38
Tāpiri 66 ki te -104.
y=2
Whakawehea ngā taha e rua ki te -19.
3x+4\times 2=26
Whakaurua te 2 mō y ki 3x+4y=26. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+8=26
Whakareatia 4 ki te 2.
3x=18
Me tango 8 mai i ngā taha e rua o te whārite.
x=6
Whakawehea ngā taha e rua ki te 3.
x=6,y=2
Kua oti te pūnaha te whakatau.