Whakaoti mō x, y
x=\frac{1}{2}=0.5
y=-3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-7y=23,6x+2y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-7y=23
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=7y+23
Me tāpiri 7y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(7y+23\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{7}{4}y+\frac{23}{4}
Whakareatia \frac{1}{4} ki te 7y+23.
6\left(\frac{7}{4}y+\frac{23}{4}\right)+2y=-3
Whakakapia te \frac{7y+23}{4} mō te x ki tērā atu whārite, 6x+2y=-3.
\frac{21}{2}y+\frac{69}{2}+2y=-3
Whakareatia 6 ki te \frac{7y+23}{4}.
\frac{25}{2}y+\frac{69}{2}=-3
Tāpiri \frac{21y}{2} ki te 2y.
\frac{25}{2}y=-\frac{75}{2}
Me tango \frac{69}{2} mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua o te whārite ki te \frac{25}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{7}{4}\left(-3\right)+\frac{23}{4}
Whakaurua te -3 mō y ki x=\frac{7}{4}y+\frac{23}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-21+23}{4}
Whakareatia \frac{7}{4} ki te -3.
x=\frac{1}{2}
Tāpiri \frac{23}{4} ki te -\frac{21}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{1}{2},y=-3
Kua oti te pūnaha te whakatau.
4x-7y=23,6x+2y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-7\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}23\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}4&-7\\6&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-7\\6&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-7\\6&2\end{matrix}\right))\left(\begin{matrix}23\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-7\times 6\right)}&-\frac{-7}{4\times 2-\left(-7\times 6\right)}\\-\frac{6}{4\times 2-\left(-7\times 6\right)}&\frac{4}{4\times 2-\left(-7\times 6\right)}\end{matrix}\right)\left(\begin{matrix}23\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}&\frac{7}{50}\\-\frac{3}{25}&\frac{2}{25}\end{matrix}\right)\left(\begin{matrix}23\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{25}\times 23+\frac{7}{50}\left(-3\right)\\-\frac{3}{25}\times 23+\frac{2}{25}\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{1}{2},y=-3
Tangohia ngā huānga poukapa x me y.
4x-7y=23,6x+2y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 4x+6\left(-7\right)y=6\times 23,4\times 6x+4\times 2y=4\left(-3\right)
Kia ōrite ai a 4x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
24x-42y=138,24x+8y=-12
Whakarūnātia.
24x-24x-42y-8y=138+12
Me tango 24x+8y=-12 mai i 24x-42y=138 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-42y-8y=138+12
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-50y=138+12
Tāpiri -42y ki te -8y.
-50y=150
Tāpiri 138 ki te 12.
y=-3
Whakawehea ngā taha e rua ki te -50.
6x+2\left(-3\right)=-3
Whakaurua te -3 mō y ki 6x+2y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-6=-3
Whakareatia 2 ki te -3.
6x=3
Me tāpiri 6 ki ngā taha e rua o te whārite.
x=\frac{1}{2}
Whakawehea ngā taha e rua ki te 6.
x=\frac{1}{2},y=-3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}