Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-5y=18,3x-2y=10
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-5y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=5y+18
Me tāpiri 5y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(5y+18\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{5}{4}y+\frac{9}{2}
Whakareatia \frac{1}{4} ki te 5y+18.
3\left(\frac{5}{4}y+\frac{9}{2}\right)-2y=10
Whakakapia te \frac{5y}{4}+\frac{9}{2} mō te x ki tērā atu whārite, 3x-2y=10.
\frac{15}{4}y+\frac{27}{2}-2y=10
Whakareatia 3 ki te \frac{5y}{4}+\frac{9}{2}.
\frac{7}{4}y+\frac{27}{2}=10
Tāpiri \frac{15y}{4} ki te -2y.
\frac{7}{4}y=-\frac{7}{2}
Me tango \frac{27}{2} mai i ngā taha e rua o te whārite.
y=-2
Whakawehea ngā taha e rua o te whārite ki te \frac{7}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{5}{4}\left(-2\right)+\frac{9}{2}
Whakaurua te -2 mō y ki x=\frac{5}{4}y+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+9}{2}
Whakareatia \frac{5}{4} ki te -2.
x=2
Tāpiri \frac{9}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=2,y=-2
Kua oti te pūnaha te whakatau.
4x-5y=18,3x-2y=10
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\10\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-5\\3&-2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-5\\3&-2\end{matrix}\right))\left(\begin{matrix}18\\10\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{4\left(-2\right)-\left(-5\times 3\right)}&-\frac{-5}{4\left(-2\right)-\left(-5\times 3\right)}\\-\frac{3}{4\left(-2\right)-\left(-5\times 3\right)}&\frac{4}{4\left(-2\right)-\left(-5\times 3\right)}\end{matrix}\right)\left(\begin{matrix}18\\10\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}&\frac{5}{7}\\-\frac{3}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}18\\10\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{7}\times 18+\frac{5}{7}\times 10\\-\frac{3}{7}\times 18+\frac{4}{7}\times 10\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-2
Tangohia ngā huānga poukapa x me y.
4x-5y=18,3x-2y=10
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-5\right)y=3\times 18,4\times 3x+4\left(-2\right)y=4\times 10
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-15y=54,12x-8y=40
Whakarūnātia.
12x-12x-15y+8y=54-40
Me tango 12x-8y=40 mai i 12x-15y=54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-15y+8y=54-40
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-7y=54-40
Tāpiri -15y ki te 8y.
-7y=14
Tāpiri 54 ki te -40.
y=-2
Whakawehea ngā taha e rua ki te -7.
3x-2\left(-2\right)=10
Whakaurua te -2 mō y ki 3x-2y=10. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+4=10
Whakareatia -2 ki te -2.
3x=6
Me tango 4 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te 3.
x=2,y=-2
Kua oti te pūnaha te whakatau.