Whakaoti mō x, y
x=-1
y = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-2y=5,3x-4y=15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-2y=5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=2y+5
Me tāpiri 2y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\left(2y+5\right)
Whakawehea ngā taha e rua ki te 4.
x=\frac{1}{2}y+\frac{5}{4}
Whakareatia \frac{1}{4} ki te 2y+5.
3\left(\frac{1}{2}y+\frac{5}{4}\right)-4y=15
Whakakapia te \frac{y}{2}+\frac{5}{4} mō te x ki tērā atu whārite, 3x-4y=15.
\frac{3}{2}y+\frac{15}{4}-4y=15
Whakareatia 3 ki te \frac{y}{2}+\frac{5}{4}.
-\frac{5}{2}y+\frac{15}{4}=15
Tāpiri \frac{3y}{2} ki te -4y.
-\frac{5}{2}y=\frac{45}{4}
Me tango \frac{15}{4} mai i ngā taha e rua o te whārite.
y=-\frac{9}{2}
Whakawehea ngā taha e rua o te whārite ki te -\frac{5}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=\frac{1}{2}\left(-\frac{9}{2}\right)+\frac{5}{4}
Whakaurua te -\frac{9}{2} mō y ki x=\frac{1}{2}y+\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-9+5}{4}
Whakareatia \frac{1}{2} ki te -\frac{9}{2} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1
Tāpiri \frac{5}{4} ki te -\frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=-\frac{9}{2}
Kua oti te pūnaha te whakatau.
4x-2y=5,3x-4y=15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-2\\3&-4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-2\\3&-4\end{matrix}\right))\left(\begin{matrix}5\\15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}&-\frac{-2}{4\left(-4\right)-\left(-2\times 3\right)}\\-\frac{3}{4\left(-4\right)-\left(-2\times 3\right)}&\frac{4}{4\left(-4\right)-\left(-2\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{10}&-\frac{2}{5}\end{matrix}\right)\left(\begin{matrix}5\\15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 5-\frac{1}{5}\times 15\\\frac{3}{10}\times 5-\frac{2}{5}\times 15\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-\frac{9}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=-\frac{9}{2}
Tangohia ngā huānga poukapa x me y.
4x-2y=5,3x-4y=15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\left(-2\right)y=3\times 5,4\times 3x+4\left(-4\right)y=4\times 15
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x-6y=15,12x-16y=60
Whakarūnātia.
12x-12x-6y+16y=15-60
Me tango 12x-16y=60 mai i 12x-6y=15 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+16y=15-60
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
10y=15-60
Tāpiri -6y ki te 16y.
10y=-45
Tāpiri 15 ki te -60.
y=-\frac{9}{2}
Whakawehea ngā taha e rua ki te 10.
3x-4\left(-\frac{9}{2}\right)=15
Whakaurua te -\frac{9}{2} mō y ki 3x-4y=15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+18=15
Whakareatia -4 ki te -\frac{9}{2}.
3x=-3
Me tango 18 mai i ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 3.
x=-1,y=-\frac{9}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}