Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
4x-y=0,3x-y=0
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=y
Me tāpiri y ki ngā taha e rua o te whārite.
x=\frac{1}{4}y
Whakawehea ngā taha e rua ki te 4.
3\times \frac{1}{4}y-y=0
Whakakapia te \frac{y}{4} mō te x ki tērā atu whārite, 3x-y=0.
\frac{3}{4}y-y=0
Whakareatia 3 ki te \frac{y}{4}.
-\frac{1}{4}y=0
Tāpiri \frac{3y}{4} ki te -y.
y=0
Me whakarea ngā taha e rua ki te -4.
x=0
Whakaurua te 0 mō y ki x=\frac{1}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=0,y=0
Kua oti te pūnaha te whakatau.
4x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
4x-y=0,3x-y=0
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-1\\3&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&-1\end{matrix}\right))\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-\left(-3\right)}&-\frac{-1}{4\left(-1\right)-\left(-3\right)}\\-\frac{3}{4\left(-1\right)-\left(-3\right)}&\frac{4}{4\left(-1\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\3&-4\end{matrix}\right)\left(\begin{matrix}0\\0\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\0\end{matrix}\right)
Whakareatia ngā poukapa.
x=0,y=0
Tangohia ngā huānga poukapa x me y.
4x-y=0
Whakaarohia te whārite tuatahi. Tangohia te y mai i ngā taha e rua.
3x-y=0
Whakaarohia te whārite tuarua. Tangohia te y mai i ngā taha e rua.
4x-y=0,3x-y=0
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-3x-y+y=0
Me tango 3x-y=0 mai i 4x-y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-3x=0
Tāpiri -y ki te y. Ka whakakore atu ngā kupu -y me y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=0
Tāpiri 4x ki te -3x.
-y=0
Whakaurua te 0 mō x ki 3x-y=0. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
y=0
Whakawehea ngā taha e rua ki te -1.
x=0,y=0
Kua oti te pūnaha te whakatau.