Whakaoti mō x, y
x = \frac{9}{5} = 1\frac{4}{5} = 1.8
y=\frac{3}{5}=0.6
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=9
Whakaarohia te whārite tuatahi. Me tāpiri te 3y ki ngā taha e rua.
5y+5x=12
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
4x+3y=9,5x+5y=12
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=9
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+9
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+9\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{9}{4}
Whakareatia \frac{1}{4} ki te -3y+9.
5\left(-\frac{3}{4}y+\frac{9}{4}\right)+5y=12
Whakakapia te \frac{-3y+9}{4} mō te x ki tērā atu whārite, 5x+5y=12.
-\frac{15}{4}y+\frac{45}{4}+5y=12
Whakareatia 5 ki te \frac{-3y+9}{4}.
\frac{5}{4}y+\frac{45}{4}=12
Tāpiri -\frac{15y}{4} ki te 5y.
\frac{5}{4}y=\frac{3}{4}
Me tango \frac{45}{4} mai i ngā taha e rua o te whārite.
y=\frac{3}{5}
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times \frac{3}{5}+\frac{9}{4}
Whakaurua te \frac{3}{5} mō y ki x=-\frac{3}{4}y+\frac{9}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{9}{20}+\frac{9}{4}
Whakareatia -\frac{3}{4} ki te \frac{3}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{5}
Tāpiri \frac{9}{4} ki te -\frac{9}{20} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{9}{5},y=\frac{3}{5}
Kua oti te pūnaha te whakatau.
4x+3y=9
Whakaarohia te whārite tuatahi. Me tāpiri te 3y ki ngā taha e rua.
5y+5x=12
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
4x+3y=9,5x+5y=12
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\12\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\5&5\end{matrix}\right))\left(\begin{matrix}4&3\\5&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&5\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\5&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&5\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\5&5\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3\times 5}&-\frac{3}{4\times 5-3\times 5}\\-\frac{5}{4\times 5-3\times 5}&\frac{4}{4\times 5-3\times 5}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{3}{5}\\-1&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9-\frac{3}{5}\times 12\\-9+\frac{4}{5}\times 12\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{5}\\\frac{3}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{9}{5},y=\frac{3}{5}
Tangohia ngā huānga poukapa x me y.
4x+3y=9
Whakaarohia te whārite tuatahi. Me tāpiri te 3y ki ngā taha e rua.
5y+5x=12
Whakaarohia te whārite tuarua. Me tāpiri te 5x ki ngā taha e rua.
4x+3y=9,5x+5y=12
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 4x+5\times 3y=5\times 9,4\times 5x+4\times 5y=4\times 12
Kia ōrite ai a 4x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
20x+15y=45,20x+20y=48
Whakarūnātia.
20x-20x+15y-20y=45-48
Me tango 20x+20y=48 mai i 20x+15y=45 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
15y-20y=45-48
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=45-48
Tāpiri 15y ki te -20y.
-5y=-3
Tāpiri 45 ki te -48.
y=\frac{3}{5}
Whakawehea ngā taha e rua ki te -5.
5x+5\times \frac{3}{5}=12
Whakaurua te \frac{3}{5} mō y ki 5x+5y=12. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+3=12
Whakareatia 5 ki te \frac{3}{5}.
5x=9
Me tango 3 mai i ngā taha e rua o te whārite.
x=\frac{9}{5}
Whakawehea ngā taha e rua ki te 5.
x=\frac{9}{5},y=\frac{3}{5}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}