Whakaoti mō x, y
x=-9
y=-12
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-3y=0,-x+y=-3
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x-3y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=3y
Me tāpiri 3y ki ngā taha e rua o te whārite.
x=\frac{1}{4}\times 3y
Whakawehea ngā taha e rua ki te 4.
x=\frac{3}{4}y
Whakareatia \frac{1}{4} ki te 3y.
-\frac{3}{4}y+y=-3
Whakakapia te \frac{3y}{4} mō te x ki tērā atu whārite, -x+y=-3.
\frac{1}{4}y=-3
Tāpiri -\frac{3y}{4} ki te y.
y=-12
Me whakarea ngā taha e rua ki te 4.
x=\frac{3}{4}\left(-12\right)
Whakaurua te -12 mō y ki x=\frac{3}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-9
Whakareatia \frac{3}{4} ki te -12.
x=-9,y=-12
Kua oti te pūnaha te whakatau.
4x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-3y=0,-x+y=-3
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-3\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&-3\\-1&1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\-1&1\end{matrix}\right))\left(\begin{matrix}0\\-3\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\left(-1\right)\right)}&-\frac{-3}{4-\left(-3\left(-1\right)\right)}\\-\frac{-1}{4-\left(-3\left(-1\right)\right)}&\frac{4}{4-\left(-3\left(-1\right)\right)}\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&3\\1&4\end{matrix}\right)\left(\begin{matrix}0\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\left(-3\right)\\4\left(-3\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-12\end{matrix}\right)
Mahia ngā tātaitanga.
x=-9,y=-12
Tangohia ngā huānga poukapa x me y.
4x-3y=0
Whakaarohia te whārite tuatahi. Tangohia te 3y mai i ngā taha e rua.
y+3-x=0
Whakaarohia te whārite tuarua. Tangohia te x mai i ngā taha e rua.
y-x=-3
Tangohia te 3 mai i ngā taha e rua. Ko te tau i tango i te kore ka hua ko tōna korenga.
4x-3y=0,-x+y=-3
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-\left(-3y\right)=0,4\left(-1\right)x+4y=4\left(-3\right)
Kia ōrite ai a 4x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-4x+3y=0,-4x+4y=-12
Whakarūnātia.
-4x+4x+3y-4y=12
Me tango -4x+4y=-12 mai i -4x+3y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-4y=12
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=12
Tāpiri 3y ki te -4y.
y=-12
Whakawehea ngā taha e rua ki te -1.
-x-12=-3
Whakaurua te -12 mō y ki -x+y=-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x=9
Me tāpiri 12 ki ngā taha e rua o te whārite.
x=-9
Whakawehea ngā taha e rua ki te -1.
x=-9,y=-12
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}