Whakaoti mō x, y
x=1
y=3
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+y=7,3x+2y=9
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+7\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+\frac{7}{4}
Whakareatia \frac{1}{4} ki te -y+7.
3\left(-\frac{1}{4}y+\frac{7}{4}\right)+2y=9
Whakakapia te \frac{-y+7}{4} mō te x ki tērā atu whārite, 3x+2y=9.
-\frac{3}{4}y+\frac{21}{4}+2y=9
Whakareatia 3 ki te \frac{-y+7}{4}.
\frac{5}{4}y+\frac{21}{4}=9
Tāpiri -\frac{3y}{4} ki te 2y.
\frac{5}{4}y=\frac{15}{4}
Me tango \frac{21}{4} mai i ngā taha e rua o te whārite.
y=3
Whakawehea ngā taha e rua o te whārite ki te \frac{5}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times 3+\frac{7}{4}
Whakaurua te 3 mō y ki x=-\frac{1}{4}y+\frac{7}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-3+7}{4}
Whakareatia -\frac{1}{4} ki te 3.
x=1
Tāpiri \frac{7}{4} ki te -\frac{3}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=1,y=3
Kua oti te pūnaha te whakatau.
4x+y=7,3x+2y=9
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\9\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}4&1\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\3&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\3&2\end{matrix}\right))\left(\begin{matrix}7\\9\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-3}&-\frac{1}{4\times 2-3}\\-\frac{3}{4\times 2-3}&\frac{4}{4\times 2-3}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\-\frac{3}{5}&\frac{4}{5}\end{matrix}\right)\left(\begin{matrix}7\\9\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\times 7-\frac{1}{5}\times 9\\-\frac{3}{5}\times 7+\frac{4}{5}\times 9\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
Mahia ngā tātaitanga.
x=1,y=3
Tangohia ngā huānga poukapa x me y.
4x+y=7,3x+2y=9
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3y=3\times 7,4\times 3x+4\times 2y=4\times 9
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+3y=21,12x+8y=36
Whakarūnātia.
12x-12x+3y-8y=21-36
Me tango 12x+8y=36 mai i 12x+3y=21 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-8y=21-36
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-5y=21-36
Tāpiri 3y ki te -8y.
-5y=-15
Tāpiri 21 ki te -36.
y=3
Whakawehea ngā taha e rua ki te -5.
3x+2\times 3=9
Whakaurua te 3 mō y ki 3x+2y=9. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x+6=9
Whakareatia 2 ki te 3.
3x=3
Me tango 6 mai i ngā taha e rua o te whārite.
x=1
Whakawehea ngā taha e rua ki te 3.
x=1,y=3
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}