Whakaoti mō x, y
x=2
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+y=4,-3x-6y=18
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=4
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+4
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+4\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+1
Whakareatia \frac{1}{4} ki te -y+4.
-3\left(-\frac{1}{4}y+1\right)-6y=18
Whakakapia te -\frac{y}{4}+1 mō te x ki tērā atu whārite, -3x-6y=18.
\frac{3}{4}y-3-6y=18
Whakareatia -3 ki te -\frac{y}{4}+1.
-\frac{21}{4}y-3=18
Tāpiri \frac{3y}{4} ki te -6y.
-\frac{21}{4}y=21
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{21}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\left(-4\right)+1
Whakaurua te -4 mō y ki x=-\frac{1}{4}y+1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=1+1
Whakareatia -\frac{1}{4} ki te -4.
x=2
Tāpiri 1 ki te 1.
x=2,y=-4
Kua oti te pūnaha te whakatau.
4x+y=4,-3x-6y=18
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\18\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-\left(-3\right)}&-\frac{1}{4\left(-6\right)-\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-\left(-3\right)}&\frac{4}{4\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{21}\\-\frac{1}{7}&-\frac{4}{21}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{1}{21}\times 18\\-\frac{1}{7}\times 4-\frac{4}{21}\times 18\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=2,y=-4
Tangohia ngā huānga poukapa x me y.
4x+y=4,-3x-6y=18
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 4x-3y=-3\times 4,4\left(-3\right)x+4\left(-6\right)y=4\times 18
Kia ōrite ai a 4x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-12x-3y=-12,-12x-24y=72
Whakarūnātia.
-12x+12x-3y+24y=-12-72
Me tango -12x-24y=72 mai i -12x-3y=-12 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-3y+24y=-12-72
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
21y=-12-72
Tāpiri -3y ki te 24y.
21y=-84
Tāpiri -12 ki te -72.
y=-4
Whakawehea ngā taha e rua ki te 21.
-3x-6\left(-4\right)=18
Whakaurua te -4 mō y ki -3x-6y=18. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+24=18
Whakareatia -6 ki te -4.
-3x=-6
Me tango 24 mai i ngā taha e rua o te whārite.
x=2
Whakawehea ngā taha e rua ki te -3.
x=2,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}