Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+y=15,19x+5y=30
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=15
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+15
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+15\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+\frac{15}{4}
Whakareatia \frac{1}{4} ki te -y+15.
19\left(-\frac{1}{4}y+\frac{15}{4}\right)+5y=30
Whakakapia te \frac{-y+15}{4} mō te x ki tērā atu whārite, 19x+5y=30.
-\frac{19}{4}y+\frac{285}{4}+5y=30
Whakareatia 19 ki te \frac{-y+15}{4}.
\frac{1}{4}y+\frac{285}{4}=30
Tāpiri -\frac{19y}{4} ki te 5y.
\frac{1}{4}y=-\frac{165}{4}
Me tango \frac{285}{4} mai i ngā taha e rua o te whārite.
y=-165
Me whakarea ngā taha e rua ki te 4.
x=-\frac{1}{4}\left(-165\right)+\frac{15}{4}
Whakaurua te -165 mō y ki x=-\frac{1}{4}y+\frac{15}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{165+15}{4}
Whakareatia -\frac{1}{4} ki te -165.
x=45
Tāpiri \frac{15}{4} ki te \frac{165}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=45,y=-165
Kua oti te pūnaha te whakatau.
4x+y=15,19x+5y=30
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}15\\30\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}4&1\\19&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\19&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\19&5\end{matrix}\right))\left(\begin{matrix}15\\30\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-19}&-\frac{1}{4\times 5-19}\\-\frac{19}{4\times 5-19}&\frac{4}{4\times 5-19}\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5&-1\\-19&4\end{matrix}\right)\left(\begin{matrix}15\\30\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\times 15-30\\-19\times 15+4\times 30\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\-165\end{matrix}\right)
Mahia ngā tātaitanga.
x=45,y=-165
Tangohia ngā huānga poukapa x me y.
4x+y=15,19x+5y=30
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
19\times 4x+19y=19\times 15,4\times 19x+4\times 5y=4\times 30
Kia ōrite ai a 4x me 19x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 19 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
76x+19y=285,76x+20y=120
Whakarūnātia.
76x-76x+19y-20y=285-120
Me tango 76x+20y=120 mai i 76x+19y=285 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
19y-20y=285-120
Tāpiri 76x ki te -76x. Ka whakakore atu ngā kupu 76x me -76x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-y=285-120
Tāpiri 19y ki te -20y.
-y=165
Tāpiri 285 ki te -120.
y=-165
Whakawehea ngā taha e rua ki te -1.
19x+5\left(-165\right)=30
Whakaurua te -165 mō y ki 19x+5y=30. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
19x-825=30
Whakareatia 5 ki te -165.
19x=855
Me tāpiri 825 ki ngā taha e rua o te whārite.
x=45
Whakawehea ngā taha e rua ki te 19.
x=45,y=-165
Kua oti te pūnaha te whakatau.