Whakaoti mō x, y
x=24
y=4
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+y=100,2x+2y=56
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=100
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y+100
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y+100\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y+25
Whakareatia \frac{1}{4} ki te -y+100.
2\left(-\frac{1}{4}y+25\right)+2y=56
Whakakapia te -\frac{y}{4}+25 mō te x ki tērā atu whārite, 2x+2y=56.
-\frac{1}{2}y+50+2y=56
Whakareatia 2 ki te -\frac{y}{4}+25.
\frac{3}{2}y+50=56
Tāpiri -\frac{y}{2} ki te 2y.
\frac{3}{2}y=6
Me tango 50 mai i ngā taha e rua o te whārite.
y=4
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\times 4+25
Whakaurua te 4 mō y ki x=-\frac{1}{4}y+25. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1+25
Whakareatia -\frac{1}{4} ki te 4.
x=24
Tāpiri 25 ki te -1.
x=24,y=4
Kua oti te pūnaha te whakatau.
4x+y=100,2x+2y=56
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}100\\56\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\2&2\end{matrix}\right))\left(\begin{matrix}4&1\\2&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&2\end{matrix}\right))\left(\begin{matrix}100\\56\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\2&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&2\end{matrix}\right))\left(\begin{matrix}100\\56\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&2\end{matrix}\right))\left(\begin{matrix}100\\56\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-2}&-\frac{1}{4\times 2-2}\\-\frac{2}{4\times 2-2}&\frac{4}{4\times 2-2}\end{matrix}\right)\left(\begin{matrix}100\\56\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{6}\\-\frac{1}{3}&\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}100\\56\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 100-\frac{1}{6}\times 56\\-\frac{1}{3}\times 100+\frac{2}{3}\times 56\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}24\\4\end{matrix}\right)
Mahia ngā tātaitanga.
x=24,y=4
Tangohia ngā huānga poukapa x me y.
4x+y=100,2x+2y=56
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2y=2\times 100,4\times 2x+4\times 2y=4\times 56
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+2y=200,8x+8y=224
Whakarūnātia.
8x-8x+2y-8y=200-224
Me tango 8x+8y=224 mai i 8x+2y=200 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-8y=200-224
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-6y=200-224
Tāpiri 2y ki te -8y.
-6y=-24
Tāpiri 200 ki te -224.
y=4
Whakawehea ngā taha e rua ki te -6.
2x+2\times 4=56
Whakaurua te 4 mō y ki 2x+2y=56. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+8=56
Whakareatia 2 ki te 4.
2x=48
Me tango 8 mai i ngā taha e rua o te whārite.
x=24
Whakawehea ngā taha e rua ki te 2.
x=24,y=4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}