Whakaoti mō x, y
x = -\frac{31}{22} = -1\frac{9}{22} \approx -1.409090909
y = -\frac{15}{11} = -1\frac{4}{11} \approx -1.363636364
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+y=-7,2x+6y=-11
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+y=-7
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-y-7
Me tango y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-y-7\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{4}y-\frac{7}{4}
Whakareatia \frac{1}{4} ki te -y-7.
2\left(-\frac{1}{4}y-\frac{7}{4}\right)+6y=-11
Whakakapia te \frac{-y-7}{4} mō te x ki tērā atu whārite, 2x+6y=-11.
-\frac{1}{2}y-\frac{7}{2}+6y=-11
Whakareatia 2 ki te \frac{-y-7}{4}.
\frac{11}{2}y-\frac{7}{2}=-11
Tāpiri -\frac{y}{2} ki te 6y.
\frac{11}{2}y=-\frac{15}{2}
Me tāpiri \frac{7}{2} ki ngā taha e rua o te whārite.
y=-\frac{15}{11}
Whakawehea ngā taha e rua o te whārite ki te \frac{11}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{4}\left(-\frac{15}{11}\right)-\frac{7}{4}
Whakaurua te -\frac{15}{11} mō y ki x=-\frac{1}{4}y-\frac{7}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15}{44}-\frac{7}{4}
Whakareatia -\frac{1}{4} ki te -\frac{15}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{31}{22}
Tāpiri -\frac{7}{4} ki te \frac{15}{44} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{31}{22},y=-\frac{15}{11}
Kua oti te pūnaha te whakatau.
4x+y=-7,2x+6y=-11
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&1\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-7\\-11\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&1\\2&6\end{matrix}\right))\left(\begin{matrix}4&1\\2&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&6\end{matrix}\right))\left(\begin{matrix}-7\\-11\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&1\\2&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&6\end{matrix}\right))\left(\begin{matrix}-7\\-11\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\2&6\end{matrix}\right))\left(\begin{matrix}-7\\-11\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-2}&-\frac{1}{4\times 6-2}\\-\frac{2}{4\times 6-2}&\frac{4}{4\times 6-2}\end{matrix}\right)\left(\begin{matrix}-7\\-11\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{1}{22}\\-\frac{1}{11}&\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}-7\\-11\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\left(-7\right)-\frac{1}{22}\left(-11\right)\\-\frac{1}{11}\left(-7\right)+\frac{2}{11}\left(-11\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{31}{22}\\-\frac{15}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{31}{22},y=-\frac{15}{11}
Tangohia ngā huānga poukapa x me y.
4x+y=-7,2x+6y=-11
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2y=2\left(-7\right),4\times 2x+4\times 6y=4\left(-11\right)
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+2y=-14,8x+24y=-44
Whakarūnātia.
8x-8x+2y-24y=-14+44
Me tango 8x+24y=-44 mai i 8x+2y=-14 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
2y-24y=-14+44
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-22y=-14+44
Tāpiri 2y ki te -24y.
-22y=30
Tāpiri -14 ki te 44.
y=-\frac{15}{11}
Whakawehea ngā taha e rua ki te -22.
2x+6\left(-\frac{15}{11}\right)=-11
Whakaurua te -\frac{15}{11} mō y ki 2x+6y=-11. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x-\frac{90}{11}=-11
Whakareatia 6 ki te -\frac{15}{11}.
2x=-\frac{31}{11}
Me tāpiri \frac{90}{11} ki ngā taha e rua o te whārite.
x=-\frac{31}{22}
Whakawehea ngā taha e rua ki te 2.
x=-\frac{31}{22},y=-\frac{15}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}