Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+9y=28,-4x-y=-28
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+9y=28
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-9y+28
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-9y+28\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{9}{4}y+7
Whakareatia \frac{1}{4} ki te -9y+28.
-4\left(-\frac{9}{4}y+7\right)-y=-28
Whakakapia te -\frac{9y}{4}+7 mō te x ki tērā atu whārite, -4x-y=-28.
9y-28-y=-28
Whakareatia -4 ki te -\frac{9y}{4}+7.
8y-28=-28
Tāpiri 9y ki te -y.
8y=0
Me tāpiri 28 ki ngā taha e rua o te whārite.
y=0
Whakawehea ngā taha e rua ki te 8.
x=7
Whakaurua te 0 mō y ki x=-\frac{9}{4}y+7. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=7,y=0
Kua oti te pūnaha te whakatau.
4x+9y=28,-4x-y=-28
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}28\\-28\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&9\\-4&-1\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\-4&-1\end{matrix}\right))\left(\begin{matrix}28\\-28\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4\left(-1\right)-9\left(-4\right)}&-\frac{9}{4\left(-1\right)-9\left(-4\right)}\\-\frac{-4}{4\left(-1\right)-9\left(-4\right)}&\frac{4}{4\left(-1\right)-9\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}28\\-28\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{32}&-\frac{9}{32}\\\frac{1}{8}&\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}28\\-28\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{32}\times 28-\frac{9}{32}\left(-28\right)\\\frac{1}{8}\times 28+\frac{1}{8}\left(-28\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\0\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=0
Tangohia ngā huānga poukapa x me y.
4x+9y=28,-4x-y=-28
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4\times 4x-4\times 9y=-4\times 28,4\left(-4\right)x+4\left(-1\right)y=4\left(-28\right)
Kia ōrite ai a 4x me -4x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -4 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-16x-36y=-112,-16x-4y=-112
Whakarūnātia.
-16x+16x-36y+4y=-112+112
Me tango -16x-4y=-112 mai i -16x-36y=-112 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-36y+4y=-112+112
Tāpiri -16x ki te 16x. Ka whakakore atu ngā kupu -16x me 16x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-32y=-112+112
Tāpiri -36y ki te 4y.
-32y=0
Tāpiri -112 ki te 112.
y=0
Whakawehea ngā taha e rua ki te -32.
-4x=-28
Whakaurua te 0 mō y ki -4x-y=-28. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=7
Whakawehea ngā taha e rua ki te -4.
x=7,y=0
Kua oti te pūnaha te whakatau.