Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+9y=-21,3x+4y=-13
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+9y=-21
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-9y-21
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-9y-21\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{9}{4}y-\frac{21}{4}
Whakareatia \frac{1}{4} ki te -9y-21.
3\left(-\frac{9}{4}y-\frac{21}{4}\right)+4y=-13
Whakakapia te \frac{-9y-21}{4} mō te x ki tērā atu whārite, 3x+4y=-13.
-\frac{27}{4}y-\frac{63}{4}+4y=-13
Whakareatia 3 ki te \frac{-9y-21}{4}.
-\frac{11}{4}y-\frac{63}{4}=-13
Tāpiri -\frac{27y}{4} ki te 4y.
-\frac{11}{4}y=\frac{11}{4}
Me tāpiri \frac{63}{4} ki ngā taha e rua o te whārite.
y=-1
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{9}{4}\left(-1\right)-\frac{21}{4}
Whakaurua te -1 mō y ki x=-\frac{9}{4}y-\frac{21}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9-21}{4}
Whakareatia -\frac{9}{4} ki te -1.
x=-3
Tāpiri -\frac{21}{4} ki te \frac{9}{4} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-3,y=-1
Kua oti te pūnaha te whakatau.
4x+9y=-21,3x+4y=-13
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&9\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-21\\-13\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}4&9\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&9\\3&4\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\3&4\end{matrix}\right))\left(\begin{matrix}-21\\-13\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-9\times 3}&-\frac{9}{4\times 4-9\times 3}\\-\frac{3}{4\times 4-9\times 3}&\frac{4}{4\times 4-9\times 3}\end{matrix}\right)\left(\begin{matrix}-21\\-13\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}&\frac{9}{11}\\\frac{3}{11}&-\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}-21\\-13\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{11}\left(-21\right)+\frac{9}{11}\left(-13\right)\\\frac{3}{11}\left(-21\right)-\frac{4}{11}\left(-13\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-3\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
x=-3,y=-1
Tangohia ngā huānga poukapa x me y.
4x+9y=-21,3x+4y=-13
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4x+3\times 9y=3\left(-21\right),4\times 3x+4\times 4y=4\left(-13\right)
Kia ōrite ai a 4x me 3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12x+27y=-63,12x+16y=-52
Whakarūnātia.
12x-12x+27y-16y=-63+52
Me tango 12x+16y=-52 mai i 12x+27y=-63 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
27y-16y=-63+52
Tāpiri 12x ki te -12x. Ka whakakore atu ngā kupu 12x me -12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=-63+52
Tāpiri 27y ki te -16y.
11y=-11
Tāpiri -63 ki te 52.
y=-1
Whakawehea ngā taha e rua ki te 11.
3x+4\left(-1\right)=-13
Whakaurua te -1 mō y ki 3x+4y=-13. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
3x-4=-13
Whakareatia 4 ki te -1.
3x=-9
Me tāpiri 4 ki ngā taha e rua o te whārite.
x=-3
Whakawehea ngā taha e rua ki te 3.
x=-3,y=-1
Kua oti te pūnaha te whakatau.