Whakaoti mō x, y
x=5
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+9y=-16,10x+6y=26
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+9y=-16
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-9y-16
Me tango 9y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-9y-16\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{9}{4}y-4
Whakareatia \frac{1}{4} ki te -9y-16.
10\left(-\frac{9}{4}y-4\right)+6y=26
Whakakapia te -\frac{9y}{4}-4 mō te x ki tērā atu whārite, 10x+6y=26.
-\frac{45}{2}y-40+6y=26
Whakareatia 10 ki te -\frac{9y}{4}-4.
-\frac{33}{2}y-40=26
Tāpiri -\frac{45y}{2} ki te 6y.
-\frac{33}{2}y=66
Me tāpiri 40 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te -\frac{33}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{9}{4}\left(-4\right)-4
Whakaurua te -4 mō y ki x=-\frac{9}{4}y-4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9-4
Whakareatia -\frac{9}{4} ki te -4.
x=5
Tāpiri -4 ki te 9.
x=5,y=-4
Kua oti te pūnaha te whakatau.
4x+9y=-16,10x+6y=26
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&9\\10&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\26\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&9\\10&6\end{matrix}\right))\left(\begin{matrix}4&9\\10&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\10&6\end{matrix}\right))\left(\begin{matrix}-16\\26\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&9\\10&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\10&6\end{matrix}\right))\left(\begin{matrix}-16\\26\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&9\\10&6\end{matrix}\right))\left(\begin{matrix}-16\\26\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-9\times 10}&-\frac{9}{4\times 6-9\times 10}\\-\frac{10}{4\times 6-9\times 10}&\frac{4}{4\times 6-9\times 10}\end{matrix}\right)\left(\begin{matrix}-16\\26\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}&\frac{3}{22}\\\frac{5}{33}&-\frac{2}{33}\end{matrix}\right)\left(\begin{matrix}-16\\26\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{11}\left(-16\right)+\frac{3}{22}\times 26\\\frac{5}{33}\left(-16\right)-\frac{2}{33}\times 26\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=5,y=-4
Tangohia ngā huānga poukapa x me y.
4x+9y=-16,10x+6y=26
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
10\times 4x+10\times 9y=10\left(-16\right),4\times 10x+4\times 6y=4\times 26
Kia ōrite ai a 4x me 10x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 10 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
40x+90y=-160,40x+24y=104
Whakarūnātia.
40x-40x+90y-24y=-160-104
Me tango 40x+24y=104 mai i 40x+90y=-160 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
90y-24y=-160-104
Tāpiri 40x ki te -40x. Ka whakakore atu ngā kupu 40x me -40x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
66y=-160-104
Tāpiri 90y ki te -24y.
66y=-264
Tāpiri -160 ki te -104.
y=-4
Whakawehea ngā taha e rua ki te 66.
10x+6\left(-4\right)=26
Whakaurua te -4 mō y ki 10x+6y=26. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
10x-24=26
Whakareatia 6 ki te -4.
10x=50
Me tāpiri 24 ki ngā taha e rua o te whārite.
x=5
Whakawehea ngā taha e rua ki te 10.
x=5,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}