Whakaoti mō x, y
x=25
y = -\frac{9}{2} = -4\frac{1}{2} = -4.5
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+8y=64,2x-8y=86
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+8y=64
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-8y+64
Me tango 8y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-8y+64\right)
Whakawehea ngā taha e rua ki te 4.
x=-2y+16
Whakareatia \frac{1}{4} ki te -8y+64.
2\left(-2y+16\right)-8y=86
Whakakapia te -2y+16 mō te x ki tērā atu whārite, 2x-8y=86.
-4y+32-8y=86
Whakareatia 2 ki te -2y+16.
-12y+32=86
Tāpiri -4y ki te -8y.
-12y=54
Me tango 32 mai i ngā taha e rua o te whārite.
y=-\frac{9}{2}
Whakawehea ngā taha e rua ki te -12.
x=-2\left(-\frac{9}{2}\right)+16
Whakaurua te -\frac{9}{2} mō y ki x=-2y+16. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9+16
Whakareatia -2 ki te -\frac{9}{2}.
x=25
Tāpiri 16 ki te 9.
x=25,y=-\frac{9}{2}
Kua oti te pūnaha te whakatau.
4x+8y=64,2x-8y=86
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}64\\86\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}4&8\\2&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&8\\2&-8\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&8\\2&-8\end{matrix}\right))\left(\begin{matrix}64\\86\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{4\left(-8\right)-8\times 2}&-\frac{8}{4\left(-8\right)-8\times 2}\\-\frac{2}{4\left(-8\right)-8\times 2}&\frac{4}{4\left(-8\right)-8\times 2}\end{matrix}\right)\left(\begin{matrix}64\\86\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{1}{24}&-\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}64\\86\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 64+\frac{1}{6}\times 86\\\frac{1}{24}\times 64-\frac{1}{12}\times 86\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}25\\-\frac{9}{2}\end{matrix}\right)
Mahia ngā tātaitanga.
x=25,y=-\frac{9}{2}
Tangohia ngā huānga poukapa x me y.
4x+8y=64,2x-8y=86
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
2\times 4x+2\times 8y=2\times 64,4\times 2x+4\left(-8\right)y=4\times 86
Kia ōrite ai a 4x me 2x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 2 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
8x+16y=128,8x-32y=344
Whakarūnātia.
8x-8x+16y+32y=128-344
Me tango 8x-32y=344 mai i 8x+16y=128 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
16y+32y=128-344
Tāpiri 8x ki te -8x. Ka whakakore atu ngā kupu 8x me -8x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
48y=128-344
Tāpiri 16y ki te 32y.
48y=-216
Tāpiri 128 ki te -344.
y=-\frac{9}{2}
Whakawehea ngā taha e rua ki te 48.
2x-8\left(-\frac{9}{2}\right)=86
Whakaurua te -\frac{9}{2} mō y ki 2x-8y=86. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
2x+36=86
Whakareatia -8 ki te -\frac{9}{2}.
2x=50
Me tango 36 mai i ngā taha e rua o te whārite.
x=25
Whakawehea ngā taha e rua ki te 2.
x=25,y=-\frac{9}{2}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}