Whakaoti mō x, y
x = \frac{16}{11} = 1\frac{5}{11} \approx 1.454545455
y=-\frac{6}{11}\approx -0.545454545
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+7y=2,5x+6y=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+7y=2
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-7y+2
Me tango 7y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-7y+2\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{7}{4}y+\frac{1}{2}
Whakareatia \frac{1}{4} ki te -7y+2.
5\left(-\frac{7}{4}y+\frac{1}{2}\right)+6y=4
Whakakapia te -\frac{7y}{4}+\frac{1}{2} mō te x ki tērā atu whārite, 5x+6y=4.
-\frac{35}{4}y+\frac{5}{2}+6y=4
Whakareatia 5 ki te -\frac{7y}{4}+\frac{1}{2}.
-\frac{11}{4}y+\frac{5}{2}=4
Tāpiri -\frac{35y}{4} ki te 6y.
-\frac{11}{4}y=\frac{3}{2}
Me tango \frac{5}{2} mai i ngā taha e rua o te whārite.
y=-\frac{6}{11}
Whakawehea ngā taha e rua o te whārite ki te -\frac{11}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{7}{4}\left(-\frac{6}{11}\right)+\frac{1}{2}
Whakaurua te -\frac{6}{11} mō y ki x=-\frac{7}{4}y+\frac{1}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{21}{22}+\frac{1}{2}
Whakareatia -\frac{7}{4} ki te -\frac{6}{11} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{16}{11}
Tāpiri \frac{1}{2} ki te \frac{21}{22} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{16}{11},y=-\frac{6}{11}
Kua oti te pūnaha te whakatau.
4x+7y=2,5x+6y=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}4&7\\5&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&7\\5&6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&7\\5&6\end{matrix}\right))\left(\begin{matrix}2\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{4\times 6-7\times 5}&-\frac{7}{4\times 6-7\times 5}\\-\frac{5}{4\times 6-7\times 5}&\frac{4}{4\times 6-7\times 5}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}&\frac{7}{11}\\\frac{5}{11}&-\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}2\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{11}\times 2+\frac{7}{11}\times 4\\\frac{5}{11}\times 2-\frac{4}{11}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{16}{11}\\-\frac{6}{11}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{16}{11},y=-\frac{6}{11}
Tangohia ngā huānga poukapa x me y.
4x+7y=2,5x+6y=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 4x+5\times 7y=5\times 2,4\times 5x+4\times 6y=4\times 4
Kia ōrite ai a 4x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
20x+35y=10,20x+24y=16
Whakarūnātia.
20x-20x+35y-24y=10-16
Me tango 20x+24y=16 mai i 20x+35y=10 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
35y-24y=10-16
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
11y=10-16
Tāpiri 35y ki te -24y.
11y=-6
Tāpiri 10 ki te -16.
y=-\frac{6}{11}
Whakawehea ngā taha e rua ki te 11.
5x+6\left(-\frac{6}{11}\right)=4
Whakaurua te -\frac{6}{11} mō y ki 5x+6y=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{36}{11}=4
Whakareatia 6 ki te -\frac{6}{11}.
5x=\frac{80}{11}
Me tāpiri \frac{36}{11} ki ngā taha e rua o te whārite.
x=\frac{16}{11}
Whakawehea ngā taha e rua ki te 5.
x=\frac{16}{11},y=-\frac{6}{11}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}