Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+6y=0,x-5y=-2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+6y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-6y
Me tango 6y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-6\right)y
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{2}y
Whakareatia \frac{1}{4} ki te -6y.
-\frac{3}{2}y-5y=-2
Whakakapia te -\frac{3y}{2} mō te x ki tērā atu whārite, x-5y=-2.
-\frac{13}{2}y=-2
Tāpiri -\frac{3y}{2} ki te -5y.
y=\frac{4}{13}
Whakawehea ngā taha e rua o te whārite ki te -\frac{13}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{2}\times \frac{4}{13}
Whakaurua te \frac{4}{13} mō y ki x=-\frac{3}{2}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{6}{13}
Whakareatia -\frac{3}{2} ki te \frac{4}{13} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{6}{13},y=\frac{4}{13}
Kua oti te pūnaha te whakatau.
4x+6y=0,x-5y=-2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}4&6\\1&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&6\\1&-5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\1&-5\end{matrix}\right))\left(\begin{matrix}0\\-2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4\left(-5\right)-6}&-\frac{6}{4\left(-5\right)-6}\\-\frac{1}{4\left(-5\right)-6}&\frac{4}{4\left(-5\right)-6}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{26}&\frac{3}{13}\\\frac{1}{26}&-\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}0\\-2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{13}\left(-2\right)\\-\frac{2}{13}\left(-2\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{13}\\\frac{4}{13}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{6}{13},y=\frac{4}{13}
Tangohia ngā huānga poukapa x me y.
4x+6y=0,x-5y=-2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+6y=0,4x+4\left(-5\right)y=4\left(-2\right)
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+6y=0,4x-20y=-8
Whakarūnātia.
4x-4x+6y+20y=8
Me tango 4x-20y=-8 mai i 4x+6y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
6y+20y=8
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
26y=8
Tāpiri 6y ki te 20y.
y=\frac{4}{13}
Whakawehea ngā taha e rua ki te 26.
x-5\times \frac{4}{13}=-2
Whakaurua te \frac{4}{13} mō y ki x-5y=-2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{20}{13}=-2
Whakareatia -5 ki te \frac{4}{13}.
x=-\frac{6}{13}
Me tāpiri \frac{20}{13} ki ngā taha e rua o te whārite.
x=-\frac{6}{13},y=\frac{4}{13}
Kua oti te pūnaha te whakatau.