Whakaoti mō x, y
x=7
y=-4
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+5y=8,-x+2y=-15
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=8
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y+8
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5y+8\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y+2
Whakareatia \frac{1}{4} ki te -5y+8.
-\left(-\frac{5}{4}y+2\right)+2y=-15
Whakakapia te -\frac{5y}{4}+2 mō te x ki tērā atu whārite, -x+2y=-15.
\frac{5}{4}y-2+2y=-15
Whakareatia -1 ki te -\frac{5y}{4}+2.
\frac{13}{4}y-2=-15
Tāpiri \frac{5y}{4} ki te 2y.
\frac{13}{4}y=-13
Me tāpiri 2 ki ngā taha e rua o te whārite.
y=-4
Whakawehea ngā taha e rua o te whārite ki te \frac{13}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{4}\left(-4\right)+2
Whakaurua te -4 mō y ki x=-\frac{5}{4}y+2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=5+2
Whakareatia -\frac{5}{4} ki te -4.
x=7
Tāpiri 2 ki te 5.
x=7,y=-4
Kua oti te pūnaha te whakatau.
4x+5y=8,-x+2y=-15
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-15\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\-1&2\end{matrix}\right))\left(\begin{matrix}4&5\\-1&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\-15\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\-1&2\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\-15\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\-1&2\end{matrix}\right))\left(\begin{matrix}8\\-15\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-5\left(-1\right)}&-\frac{5}{4\times 2-5\left(-1\right)}\\-\frac{-1}{4\times 2-5\left(-1\right)}&\frac{4}{4\times 2-5\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\-15\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&-\frac{5}{13}\\\frac{1}{13}&\frac{4}{13}\end{matrix}\right)\left(\begin{matrix}8\\-15\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 8-\frac{5}{13}\left(-15\right)\\\frac{1}{13}\times 8+\frac{4}{13}\left(-15\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-4\end{matrix}\right)
Mahia ngā tātaitanga.
x=7,y=-4
Tangohia ngā huānga poukapa x me y.
4x+5y=8,-x+2y=-15
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-4x-5y=-8,4\left(-1\right)x+4\times 2y=4\left(-15\right)
Kia ōrite ai a 4x me -x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-4x-5y=-8,-4x+8y=-60
Whakarūnātia.
-4x+4x-5y-8y=-8+60
Me tango -4x+8y=-60 mai i -4x-5y=-8 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-5y-8y=-8+60
Tāpiri -4x ki te 4x. Ka whakakore atu ngā kupu -4x me 4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-13y=-8+60
Tāpiri -5y ki te -8y.
-13y=52
Tāpiri -8 ki te 60.
y=-4
Whakawehea ngā taha e rua ki te -13.
-x+2\left(-4\right)=-15
Whakaurua te -4 mō y ki -x+2y=-15. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-x-8=-15
Whakareatia 2 ki te -4.
-x=-7
Me tāpiri 8 ki ngā taha e rua o te whārite.
x=7
Whakawehea ngā taha e rua ki te -1.
x=7,y=-4
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}