Whakaoti mō x, y
x=-1
y=2
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+5y=6,6x-7y=-20
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=6
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y+6
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5y+6\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y+\frac{3}{2}
Whakareatia \frac{1}{4} ki te -5y+6.
6\left(-\frac{5}{4}y+\frac{3}{2}\right)-7y=-20
Whakakapia te -\frac{5y}{4}+\frac{3}{2} mō te x ki tērā atu whārite, 6x-7y=-20.
-\frac{15}{2}y+9-7y=-20
Whakareatia 6 ki te -\frac{5y}{4}+\frac{3}{2}.
-\frac{29}{2}y+9=-20
Tāpiri -\frac{15y}{2} ki te -7y.
-\frac{29}{2}y=-29
Me tango 9 mai i ngā taha e rua o te whārite.
y=2
Whakawehea ngā taha e rua o te whārite ki te -\frac{29}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{4}\times 2+\frac{3}{2}
Whakaurua te 2 mō y ki x=-\frac{5}{4}y+\frac{3}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{-5+3}{2}
Whakareatia -\frac{5}{4} ki te 2.
x=-1
Tāpiri \frac{3}{2} ki te -\frac{5}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=2
Kua oti te pūnaha te whakatau.
4x+5y=6,6x-7y=-20
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-20\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\6&-7\end{matrix}\right))\left(\begin{matrix}4&5\\6&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&-7\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\6&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&-7\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\6&-7\end{matrix}\right))\left(\begin{matrix}6\\-20\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4\left(-7\right)-5\times 6}&-\frac{5}{4\left(-7\right)-5\times 6}\\-\frac{6}{4\left(-7\right)-5\times 6}&\frac{4}{4\left(-7\right)-5\times 6}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{58}&\frac{5}{58}\\\frac{3}{29}&-\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}6\\-20\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{58}\times 6+\frac{5}{58}\left(-20\right)\\\frac{3}{29}\times 6-\frac{2}{29}\left(-20\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\2\end{matrix}\right)
Mahia ngā tātaitanga.
x=-1,y=2
Tangohia ngā huānga poukapa x me y.
4x+5y=6,6x-7y=-20
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
6\times 4x+6\times 5y=6\times 6,4\times 6x+4\left(-7\right)y=4\left(-20\right)
Kia ōrite ai a 4x me 6x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 6 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
24x+30y=36,24x-28y=-80
Whakarūnātia.
24x-24x+30y+28y=36+80
Me tango 24x-28y=-80 mai i 24x+30y=36 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
30y+28y=36+80
Tāpiri 24x ki te -24x. Ka whakakore atu ngā kupu 24x me -24x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
58y=36+80
Tāpiri 30y ki te 28y.
58y=116
Tāpiri 36 ki te 80.
y=2
Whakawehea ngā taha e rua ki te 58.
6x-7\times 2=-20
Whakaurua te 2 mō y ki 6x-7y=-20. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
6x-14=-20
Whakareatia -7 ki te 2.
6x=-6
Me tāpiri 14 ki ngā taha e rua o te whārite.
x=-1
Whakawehea ngā taha e rua ki te 6.
x=-1,y=2
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}