Whakaoti mō x, y
x=\frac{12}{53}\approx 0.226415094
y=\frac{1}{53}\approx 0.018867925
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+5y=1,5x-7y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=1
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y+1
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5y+1\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y+\frac{1}{4}
Whakareatia \frac{1}{4} ki te -5y+1.
5\left(-\frac{5}{4}y+\frac{1}{4}\right)-7y=1
Whakakapia te \frac{-5y+1}{4} mō te x ki tērā atu whārite, 5x-7y=1.
-\frac{25}{4}y+\frac{5}{4}-7y=1
Whakareatia 5 ki te \frac{-5y+1}{4}.
-\frac{53}{4}y+\frac{5}{4}=1
Tāpiri -\frac{25y}{4} ki te -7y.
-\frac{53}{4}y=-\frac{1}{4}
Me tango \frac{5}{4} mai i ngā taha e rua o te whārite.
y=\frac{1}{53}
Whakawehea ngā taha e rua o te whārite ki te -\frac{53}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{4}\times \frac{1}{53}+\frac{1}{4}
Whakaurua te \frac{1}{53} mō y ki x=-\frac{5}{4}y+\frac{1}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{5}{212}+\frac{1}{4}
Whakareatia -\frac{5}{4} ki te \frac{1}{53} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{12}{53}
Tāpiri \frac{1}{4} ki te -\frac{5}{212} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{12}{53},y=\frac{1}{53}
Kua oti te pūnaha te whakatau.
4x+5y=1,5x-7y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}4&5\\5&-7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\5&-7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&-7\end{matrix}\right))\left(\begin{matrix}1\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{4\left(-7\right)-5\times 5}&-\frac{5}{4\left(-7\right)-5\times 5}\\-\frac{5}{4\left(-7\right)-5\times 5}&\frac{4}{4\left(-7\right)-5\times 5}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{53}&\frac{5}{53}\\\frac{5}{53}&-\frac{4}{53}\end{matrix}\right)\left(\begin{matrix}1\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7+5}{53}\\\frac{5-4}{53}\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{53}\\\frac{1}{53}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{12}{53},y=\frac{1}{53}
Tangohia ngā huānga poukapa x me y.
4x+5y=1,5x-7y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 4x+5\times 5y=5,4\times 5x+4\left(-7\right)y=4
Kia ōrite ai a 4x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
20x+25y=5,20x-28y=4
Whakarūnātia.
20x-20x+25y+28y=5-4
Me tango 20x-28y=4 mai i 20x+25y=5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y+28y=5-4
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
53y=5-4
Tāpiri 25y ki te 28y.
53y=1
Tāpiri 5 ki te -4.
y=\frac{1}{53}
Whakawehea ngā taha e rua ki te 53.
5x-7\times \frac{1}{53}=1
Whakaurua te \frac{1}{53} mō y ki 5x-7y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x-\frac{7}{53}=1
Whakareatia -7 ki te \frac{1}{53}.
5x=\frac{60}{53}
Me tāpiri \frac{7}{53} ki ngā taha e rua o te whārite.
x=\frac{12}{53}
Whakawehea ngā taha e rua ki te 5.
x=\frac{12}{53},y=\frac{1}{53}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}