Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+5y=0,8x-15y=-5
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5\right)y
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y
Whakareatia \frac{1}{4} ki te -5y.
8\left(-\frac{5}{4}\right)y-15y=-5
Whakakapia te -\frac{5y}{4} mō te x ki tērā atu whārite, 8x-15y=-5.
-10y-15y=-5
Whakareatia 8 ki te -\frac{5y}{4}.
-25y=-5
Tāpiri -10y ki te -15y.
y=\frac{1}{5}
Whakawehea ngā taha e rua ki te -25.
x=-\frac{5}{4}\times \frac{1}{5}
Whakaurua te \frac{1}{5} mō y ki x=-\frac{5}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{1}{4}
Whakareatia -\frac{5}{4} ki te \frac{1}{5} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{1}{4},y=\frac{1}{5}
Kua oti te pūnaha te whakatau.
4x+5y=0,8x-15y=-5
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\-5\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}4&5\\8&-15\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\8&-15\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\8&-15\end{matrix}\right))\left(\begin{matrix}0\\-5\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{15}{4\left(-15\right)-5\times 8}&-\frac{5}{4\left(-15\right)-5\times 8}\\-\frac{8}{4\left(-15\right)-5\times 8}&\frac{4}{4\left(-15\right)-5\times 8}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{20}&\frac{1}{20}\\\frac{2}{25}&-\frac{1}{25}\end{matrix}\right)\left(\begin{matrix}0\\-5\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{20}\left(-5\right)\\-\frac{1}{25}\left(-5\right)\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\\frac{1}{5}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{1}{4},y=\frac{1}{5}
Tangohia ngā huānga poukapa x me y.
4x+5y=0,8x-15y=-5
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
8\times 4x+8\times 5y=0,4\times 8x+4\left(-15\right)y=4\left(-5\right)
Kia ōrite ai a 4x me 8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
32x+40y=0,32x-60y=-20
Whakarūnātia.
32x-32x+40y+60y=20
Me tango 32x-60y=-20 mai i 32x+40y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
40y+60y=20
Tāpiri 32x ki te -32x. Ka whakakore atu ngā kupu 32x me -32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
100y=20
Tāpiri 40y ki te 60y.
y=\frac{1}{5}
Whakawehea ngā taha e rua ki te 100.
8x-15\times \frac{1}{5}=-5
Whakaurua te \frac{1}{5} mō y ki 8x-15y=-5. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
8x-3=-5
Whakareatia -15 ki te \frac{1}{5}.
8x=-2
Me tāpiri 3 ki ngā taha e rua o te whārite.
x=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 8.
x=-\frac{1}{4},y=\frac{1}{5}
Kua oti te pūnaha te whakatau.