Whakaoti mō x, y
x = -\frac{169}{3} = -56\frac{1}{3} \approx -56.333333333
y = \frac{128}{3} = 42\frac{2}{3} \approx 42.666666667
Graph
Tohaina
Kua tāruatia ki te papatopenga
5x-17+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=17
Me tāpiri te 17 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+5y=-12,5x+7y=17
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+5y=-12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-5y-12
Me tango 5y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-5y-12\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{5}{4}y-3
Whakareatia \frac{1}{4} ki te -5y-12.
5\left(-\frac{5}{4}y-3\right)+7y=17
Whakakapia te -\frac{5y}{4}-3 mō te x ki tērā atu whārite, 5x+7y=17.
-\frac{25}{4}y-15+7y=17
Whakareatia 5 ki te -\frac{5y}{4}-3.
\frac{3}{4}y-15=17
Tāpiri -\frac{25y}{4} ki te 7y.
\frac{3}{4}y=32
Me tāpiri 15 ki ngā taha e rua o te whārite.
y=\frac{128}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{5}{4}\times \frac{128}{3}-3
Whakaurua te \frac{128}{3} mō y ki x=-\frac{5}{4}y-3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-\frac{160}{3}-3
Whakareatia -\frac{5}{4} ki te \frac{128}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-\frac{169}{3}
Tāpiri -3 ki te -\frac{160}{3}.
x=-\frac{169}{3},y=\frac{128}{3}
Kua oti te pūnaha te whakatau.
5x-17+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=17
Me tāpiri te 17 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+5y=-12,5x+7y=17
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&5\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-12\\17\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&5\\5&7\end{matrix}\right))\left(\begin{matrix}4&5\\5&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&7\end{matrix}\right))\left(\begin{matrix}-12\\17\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&5\\5&7\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&7\end{matrix}\right))\left(\begin{matrix}-12\\17\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\5&7\end{matrix}\right))\left(\begin{matrix}-12\\17\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{4\times 7-5\times 5}&-\frac{5}{4\times 7-5\times 5}\\-\frac{5}{4\times 7-5\times 5}&\frac{4}{4\times 7-5\times 5}\end{matrix}\right)\left(\begin{matrix}-12\\17\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}&-\frac{5}{3}\\-\frac{5}{3}&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}-12\\17\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{3}\left(-12\right)-\frac{5}{3}\times 17\\-\frac{5}{3}\left(-12\right)+\frac{4}{3}\times 17\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{169}{3}\\\frac{128}{3}\end{matrix}\right)
Mahia ngā tātaitanga.
x=-\frac{169}{3},y=\frac{128}{3}
Tangohia ngā huānga poukapa x me y.
5x-17+7y=0
Whakaarohia te whārite tuarua. Me tāpiri te 7y ki ngā taha e rua.
5x+7y=17
Me tāpiri te 17 ki ngā taha e rua. Ko te tau i tāpiria he kore ka hua koia tonu.
4x+5y=-12,5x+7y=17
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
5\times 4x+5\times 5y=5\left(-12\right),4\times 5x+4\times 7y=4\times 17
Kia ōrite ai a 4x me 5x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 5 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
20x+25y=-60,20x+28y=68
Whakarūnātia.
20x-20x+25y-28y=-60-68
Me tango 20x+28y=68 mai i 20x+25y=-60 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
25y-28y=-60-68
Tāpiri 20x ki te -20x. Ka whakakore atu ngā kupu 20x me -20x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-3y=-60-68
Tāpiri 25y ki te -28y.
-3y=-128
Tāpiri -60 ki te -68.
y=\frac{128}{3}
Whakawehea ngā taha e rua ki te -3.
5x+7\times \frac{128}{3}=17
Whakaurua te \frac{128}{3} mō y ki 5x+7y=17. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
5x+\frac{896}{3}=17
Whakareatia 7 ki te \frac{128}{3}.
5x=-\frac{845}{3}
Me tango \frac{896}{3} mai i ngā taha e rua o te whārite.
x=-\frac{169}{3}
Whakawehea ngā taha e rua ki te 5.
x=-\frac{169}{3},y=\frac{128}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}