Whakaoti mō x, y
x = \frac{84}{17} = 4\frac{16}{17} \approx 4.941176471
y=-\frac{10}{17}\approx -0.588235294
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=18,x+5y=2
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y+18
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3y+18\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y+\frac{9}{2}
Whakareatia \frac{1}{4} ki te -3y+18.
-\frac{3}{4}y+\frac{9}{2}+5y=2
Whakakapia te -\frac{3y}{4}+\frac{9}{2} mō te x ki tērā atu whārite, x+5y=2.
\frac{17}{4}y+\frac{9}{2}=2
Tāpiri -\frac{3y}{4} ki te 5y.
\frac{17}{4}y=-\frac{5}{2}
Me tango \frac{9}{2} mai i ngā taha e rua o te whārite.
y=-\frac{10}{17}
Whakawehea ngā taha e rua o te whārite ki te \frac{17}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\left(-\frac{10}{17}\right)+\frac{9}{2}
Whakaurua te -\frac{10}{17} mō y ki x=-\frac{3}{4}y+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{15}{34}+\frac{9}{2}
Whakareatia -\frac{3}{4} ki te -\frac{10}{17} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{84}{17}
Tāpiri \frac{9}{2} ki te \frac{15}{34} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{84}{17},y=-\frac{10}{17}
Kua oti te pūnaha te whakatau.
4x+3y=18,x+5y=2
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\2\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}4&3\\1&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\1&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\1&5\end{matrix}\right))\left(\begin{matrix}18\\2\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-3}&-\frac{3}{4\times 5-3}\\-\frac{1}{4\times 5-3}&\frac{4}{4\times 5-3}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}&-\frac{3}{17}\\-\frac{1}{17}&\frac{4}{17}\end{matrix}\right)\left(\begin{matrix}18\\2\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{17}\times 18-\frac{3}{17}\times 2\\-\frac{1}{17}\times 18+\frac{4}{17}\times 2\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{84}{17}\\-\frac{10}{17}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{84}{17},y=-\frac{10}{17}
Tangohia ngā huānga poukapa x me y.
4x+3y=18,x+5y=2
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x+3y=18,4x+4\times 5y=4\times 2
Kia ōrite ai a 4x me x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 1 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
4x+3y=18,4x+20y=8
Whakarūnātia.
4x-4x+3y-20y=18-8
Me tango 4x+20y=8 mai i 4x+3y=18 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
3y-20y=18-8
Tāpiri 4x ki te -4x. Ka whakakore atu ngā kupu 4x me -4x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-17y=18-8
Tāpiri 3y ki te -20y.
-17y=10
Tāpiri 18 ki te -8.
y=-\frac{10}{17}
Whakawehea ngā taha e rua ki te -17.
x+5\left(-\frac{10}{17}\right)=2
Whakaurua te -\frac{10}{17} mō y ki x+5y=2. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x-\frac{50}{17}=2
Whakareatia 5 ki te -\frac{10}{17}.
x=\frac{84}{17}
Me tāpiri \frac{50}{17} ki ngā taha e rua o te whārite.
x=\frac{84}{17},y=-\frac{10}{17}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}