Whakaoti mō x, y
x=-1
y = \frac{4}{3} = 1\frac{1}{3} \approx 1.333333333
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+3y=0,3x+3y=1
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+3y=0
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-3y
Me tango 3y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-3\right)y
Whakawehea ngā taha e rua ki te 4.
x=-\frac{3}{4}y
Whakareatia \frac{1}{4} ki te -3y.
3\left(-\frac{3}{4}\right)y+3y=1
Whakakapia te -\frac{3y}{4} mō te x ki tērā atu whārite, 3x+3y=1.
-\frac{9}{4}y+3y=1
Whakareatia 3 ki te -\frac{3y}{4}.
\frac{3}{4}y=1
Tāpiri -\frac{9y}{4} ki te 3y.
y=\frac{4}{3}
Whakawehea ngā taha e rua o te whārite ki te \frac{3}{4}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{3}{4}\times \frac{4}{3}
Whakaurua te \frac{4}{3} mō y ki x=-\frac{3}{4}y. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=-1
Whakareatia -\frac{3}{4} ki te \frac{4}{3} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=-1,y=\frac{4}{3}
Kua oti te pūnaha te whakatau.
4x+3y=0,3x+3y=1
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}0\\1\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}4&3\\3&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&3\\3&3\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&3\end{matrix}\right))\left(\begin{matrix}0\\1\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-3\times 3}&-\frac{3}{4\times 3-3\times 3}\\-\frac{3}{4\times 3-3\times 3}&\frac{4}{4\times 3-3\times 3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&\frac{4}{3}\end{matrix}\right)\left(\begin{matrix}0\\1\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\\frac{4}{3}\end{matrix}\right)
Whakareatia ngā poukapa.
x=-1,y=\frac{4}{3}
Tangohia ngā huānga poukapa x me y.
4x+3y=0,3x+3y=1
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4x-3x+3y-3y=-1
Me tango 3x+3y=1 mai i 4x+3y=0 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4x-3x=-1
Tāpiri 3y ki te -3y. Ka whakakore atu ngā kupu 3y me -3y, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
x=-1
Tāpiri 4x ki te -3x.
3\left(-1\right)+3y=1
Whakaurua te -1 mō x ki 3x+3y=1. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō y hāngai tonu.
-3+3y=1
Whakareatia 3 ki te -1.
3y=4
Me tāpiri 3 ki ngā taha e rua o te whārite.
y=\frac{4}{3}
Whakawehea ngā taha e rua ki te 3.
x=-1,y=\frac{4}{3}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}