Whakaoti mō x, y
x=9
y=-9
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+2y=18,-3x-6y=27
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=18
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+18
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+18\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+\frac{9}{2}
Whakareatia \frac{1}{4} ki te -2y+18.
-3\left(-\frac{1}{2}y+\frac{9}{2}\right)-6y=27
Whakakapia te \frac{-y+9}{2} mō te x ki tērā atu whārite, -3x-6y=27.
\frac{3}{2}y-\frac{27}{2}-6y=27
Whakareatia -3 ki te \frac{-y+9}{2}.
-\frac{9}{2}y-\frac{27}{2}=27
Tāpiri \frac{3y}{2} ki te -6y.
-\frac{9}{2}y=\frac{81}{2}
Me tāpiri \frac{27}{2} ki ngā taha e rua o te whārite.
y=-9
Whakawehea ngā taha e rua o te whārite ki te -\frac{9}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\left(-9\right)+\frac{9}{2}
Whakaurua te -9 mō y ki x=-\frac{1}{2}y+\frac{9}{2}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{9+9}{2}
Whakareatia -\frac{1}{2} ki te -9.
x=9
Tāpiri \frac{9}{2} ki te \frac{9}{2} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=9,y=-9
Kua oti te pūnaha te whakatau.
4x+2y=18,-3x-6y=27
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}18\\27\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\-3&-6\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\-3&-6\end{matrix}\right))\left(\begin{matrix}18\\27\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-2\left(-3\right)}&-\frac{2}{4\left(-6\right)-2\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-2\left(-3\right)}&\frac{4}{4\left(-6\right)-2\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{9}\\-\frac{1}{6}&-\frac{2}{9}\end{matrix}\right)\left(\begin{matrix}18\\27\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 18+\frac{1}{9}\times 27\\-\frac{1}{6}\times 18-\frac{2}{9}\times 27\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\-9\end{matrix}\right)
Mahia ngā tātaitanga.
x=9,y=-9
Tangohia ngā huānga poukapa x me y.
4x+2y=18,-3x-6y=27
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-3\times 4x-3\times 2y=-3\times 18,4\left(-3\right)x+4\left(-6\right)y=4\times 27
Kia ōrite ai a 4x me -3x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-12x-6y=-54,-12x-24y=108
Whakarūnātia.
-12x+12x-6y+24y=-54-108
Me tango -12x-24y=108 mai i -12x-6y=-54 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-6y+24y=-54-108
Tāpiri -12x ki te 12x. Ka whakakore atu ngā kupu -12x me 12x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
18y=-54-108
Tāpiri -6y ki te 24y.
18y=-162
Tāpiri -54 ki te -108.
y=-9
Whakawehea ngā taha e rua ki te 18.
-3x-6\left(-9\right)=27
Whakaurua te -9 mō y ki -3x-6y=27. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-3x+54=27
Whakareatia -6 ki te -9.
-3x=-27
Me tango 54 mai i ngā taha e rua o te whārite.
x=9
Whakawehea ngā taha e rua ki te -3.
x=9,y=-9
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}