Whakaoti mō x, y
x = \frac{89}{29} = 3\frac{2}{29} \approx 3.068965517
y=-\frac{4}{29}\approx -0.137931034
Graph
Tohaina
Kua tāruatia ki te papatopenga
4x+2y=12,7x+18y=19
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+2y=12
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-2y+12
Me tango 2y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-2y+12\right)
Whakawehea ngā taha e rua ki te 4.
x=-\frac{1}{2}y+3
Whakareatia \frac{1}{4} ki te -2y+12.
7\left(-\frac{1}{2}y+3\right)+18y=19
Whakakapia te -\frac{y}{2}+3 mō te x ki tērā atu whārite, 7x+18y=19.
-\frac{7}{2}y+21+18y=19
Whakareatia 7 ki te -\frac{y}{2}+3.
\frac{29}{2}y+21=19
Tāpiri -\frac{7y}{2} ki te 18y.
\frac{29}{2}y=-2
Me tango 21 mai i ngā taha e rua o te whārite.
y=-\frac{4}{29}
Whakawehea ngā taha e rua o te whārite ki te \frac{29}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
x=-\frac{1}{2}\left(-\frac{4}{29}\right)+3
Whakaurua te -\frac{4}{29} mō y ki x=-\frac{1}{2}y+3. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=\frac{2}{29}+3
Whakareatia -\frac{1}{2} ki te -\frac{4}{29} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
x=\frac{89}{29}
Tāpiri 3 ki te \frac{2}{29}.
x=\frac{89}{29},y=-\frac{4}{29}
Kua oti te pūnaha te whakatau.
4x+2y=12,7x+18y=19
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\19\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}4&2\\7&18\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&2\\7&18\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&2\\7&18\end{matrix}\right))\left(\begin{matrix}12\\19\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{18}{4\times 18-2\times 7}&-\frac{2}{4\times 18-2\times 7}\\-\frac{7}{4\times 18-2\times 7}&\frac{4}{4\times 18-2\times 7}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}&-\frac{1}{29}\\-\frac{7}{58}&\frac{2}{29}\end{matrix}\right)\left(\begin{matrix}12\\19\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{29}\times 12-\frac{1}{29}\times 19\\-\frac{7}{58}\times 12+\frac{2}{29}\times 19\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{89}{29}\\-\frac{4}{29}\end{matrix}\right)
Mahia ngā tātaitanga.
x=\frac{89}{29},y=-\frac{4}{29}
Tangohia ngā huānga poukapa x me y.
4x+2y=12,7x+18y=19
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
7\times 4x+7\times 2y=7\times 12,4\times 7x+4\times 18y=4\times 19
Kia ōrite ai a 4x me 7x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 7 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
28x+14y=84,28x+72y=76
Whakarūnātia.
28x-28x+14y-72y=84-76
Me tango 28x+72y=76 mai i 28x+14y=84 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
14y-72y=84-76
Tāpiri 28x ki te -28x. Ka whakakore atu ngā kupu 28x me -28x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-58y=84-76
Tāpiri 14y ki te -72y.
-58y=8
Tāpiri 84 ki te -76.
y=-\frac{4}{29}
Whakawehea ngā taha e rua ki te -58.
7x+18\left(-\frac{4}{29}\right)=19
Whakaurua te -\frac{4}{29} mō y ki 7x+18y=19. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
7x-\frac{72}{29}=19
Whakareatia 18 ki te -\frac{4}{29}.
7x=\frac{623}{29}
Me tāpiri \frac{72}{29} ki ngā taha e rua o te whārite.
x=\frac{89}{29}
Whakawehea ngā taha e rua ki te 7.
x=\frac{89}{29},y=-\frac{4}{29}
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}