Tīpoka ki ngā ihirangi matua
Whakaoti mō x, y
Tick mark Image
Graph

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4x+12y=-24,-8x-20y=36
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4x+12y=-24
Kōwhiria tētahi o ngā whārite ka whakaotia mō te x mā te wehe i te x i te taha mauī o te tohu ōrite.
4x=-12y-24
Me tango 12y mai i ngā taha e rua o te whārite.
x=\frac{1}{4}\left(-12y-24\right)
Whakawehea ngā taha e rua ki te 4.
x=-3y-6
Whakareatia \frac{1}{4} ki te -12y-24.
-8\left(-3y-6\right)-20y=36
Whakakapia te -3y-6 mō te x ki tērā atu whārite, -8x-20y=36.
24y+48-20y=36
Whakareatia -8 ki te -3y-6.
4y+48=36
Tāpiri 24y ki te -20y.
4y=-12
Me tango 48 mai i ngā taha e rua o te whārite.
y=-3
Whakawehea ngā taha e rua ki te 4.
x=-3\left(-3\right)-6
Whakaurua te -3 mō y ki x=-3y-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
x=9-6
Whakareatia -3 ki te -3.
x=3
Tāpiri -6 ki te 9.
x=3,y=-3
Kua oti te pūnaha te whakatau.
4x+12y=-24,-8x-20y=36
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-24\\36\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right))\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right))\left(\begin{matrix}-24\\36\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&12\\-8&-20\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right))\left(\begin{matrix}-24\\36\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&12\\-8&-20\end{matrix}\right))\left(\begin{matrix}-24\\36\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{20}{4\left(-20\right)-12\left(-8\right)}&-\frac{12}{4\left(-20\right)-12\left(-8\right)}\\-\frac{-8}{4\left(-20\right)-12\left(-8\right)}&\frac{4}{4\left(-20\right)-12\left(-8\right)}\end{matrix}\right)\left(\begin{matrix}-24\\36\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}&-\frac{3}{4}\\\frac{1}{2}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-24\\36\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{4}\left(-24\right)-\frac{3}{4}\times 36\\\frac{1}{2}\left(-24\right)+\frac{1}{4}\times 36\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-3\end{matrix}\right)
Mahia ngā tātaitanga.
x=3,y=-3
Tangohia ngā huānga poukapa x me y.
4x+12y=-24,-8x-20y=36
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
-8\times 4x-8\times 12y=-8\left(-24\right),4\left(-8\right)x+4\left(-20\right)y=4\times 36
Kia ōrite ai a 4x me -8x, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te -8 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
-32x-96y=192,-32x-80y=144
Whakarūnātia.
-32x+32x-96y+80y=192-144
Me tango -32x-80y=144 mai i -32x-96y=192 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
-96y+80y=192-144
Tāpiri -32x ki te 32x. Ka whakakore atu ngā kupu -32x me 32x, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-16y=192-144
Tāpiri -96y ki te 80y.
-16y=48
Tāpiri 192 ki te -144.
y=-3
Whakawehea ngā taha e rua ki te -16.
-8x-20\left(-3\right)=36
Whakaurua te -3 mō y ki -8x-20y=36. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō x hāngai tonu.
-8x+60=36
Whakareatia -20 ki te -3.
-8x=-24
Me tango 60 mai i ngā taha e rua o te whārite.
x=3
Whakawehea ngā taha e rua ki te -8.
x=3,y=-3
Kua oti te pūnaha te whakatau.