Whakaoti mō b, c
b=-\frac{1}{4}=-0.25
c=-1
Tohaina
Kua tāruatia ki te papatopenga
4b+4c=-5,4b+5c=-6
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4b+4c=-5
Kōwhiria tētahi o ngā whārite ka whakaotia mō te b mā te wehe i te b i te taha mauī o te tohu ōrite.
4b=-4c-5
Me tango 4c mai i ngā taha e rua o te whārite.
b=\frac{1}{4}\left(-4c-5\right)
Whakawehea ngā taha e rua ki te 4.
b=-c-\frac{5}{4}
Whakareatia \frac{1}{4} ki te -4c-5.
4\left(-c-\frac{5}{4}\right)+5c=-6
Whakakapia te -c-\frac{5}{4} mō te b ki tērā atu whārite, 4b+5c=-6.
-4c-5+5c=-6
Whakareatia 4 ki te -c-\frac{5}{4}.
c-5=-6
Tāpiri -4c ki te 5c.
c=-1
Me tāpiri 5 ki ngā taha e rua o te whārite.
b=-\left(-1\right)-\frac{5}{4}
Whakaurua te -1 mō c ki b=-c-\frac{5}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
b=1-\frac{5}{4}
Whakareatia -1 ki te -1.
b=-\frac{1}{4}
Tāpiri -\frac{5}{4} ki te 1.
b=-\frac{1}{4},c=-1
Kua oti te pūnaha te whakatau.
4b+4c=-5,4b+5c=-6
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&4\\4&5\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-5\\-6\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&4\\4&5\end{matrix}\right))\left(\begin{matrix}4&4\\4&5\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\4&5\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&4\\4&5\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\4&5\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}b\\c\end{matrix}\right)=inverse(\left(\begin{matrix}4&4\\4&5\end{matrix}\right))\left(\begin{matrix}-5\\-6\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4\times 5-4\times 4}&-\frac{4}{4\times 5-4\times 4}\\-\frac{4}{4\times 5-4\times 4}&\frac{4}{4\times 5-4\times 4}\end{matrix}\right)\left(\begin{matrix}-5\\-6\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-1\\-1&1\end{matrix}\right)\left(\begin{matrix}-5\\-6\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\left(-5\right)-\left(-6\right)\\-\left(-5\right)-6\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}b\\c\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\\-1\end{matrix}\right)
Mahia ngā tātaitanga.
b=-\frac{1}{4},c=-1
Tangohia ngā huānga poukapa b me c.
4b+4c=-5,4b+5c=-6
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
4b-4b+4c-5c=-5+6
Me tango 4b+5c=-6 mai i 4b+4c=-5 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
4c-5c=-5+6
Tāpiri 4b ki te -4b. Ka whakakore atu ngā kupu 4b me -4b, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-c=-5+6
Tāpiri 4c ki te -5c.
-c=1
Tāpiri -5 ki te 6.
c=-1
Whakawehea ngā taha e rua ki te -1.
4b+5\left(-1\right)=-6
Whakaurua te -1 mō c ki 4b+5c=-6. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō b hāngai tonu.
4b-5=-6
Whakareatia 5 ki te -1.
4b=-1
Me tāpiri 5 ki ngā taha e rua o te whārite.
b=-\frac{1}{4}
Whakawehea ngā taha e rua ki te 4.
b=-\frac{1}{4},c=-1
Kua oti te pūnaha te whakatau.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}