Tīpoka ki ngā ihirangi matua
Whakaoti mō a_1, d
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

4a_{1}+6d=3,3a_{1}+21d=4
Hei whakaoti i ētahi whārite takirua mā te whakakapinga, me whakaoti tētahi whārite i te tuatahi mō tētahi o ngā taurangi. Ka whakakapi i te otinga mō taua taurangi ki tērā o ngā whārite.
4a_{1}+6d=3
Kōwhiria tētahi o ngā whārite ka whakaotia mō te a_{1} mā te wehe i te a_{1} i te taha mauī o te tohu ōrite.
4a_{1}=-6d+3
Me tango 6d mai i ngā taha e rua o te whārite.
a_{1}=\frac{1}{4}\left(-6d+3\right)
Whakawehea ngā taha e rua ki te 4.
a_{1}=-\frac{3}{2}d+\frac{3}{4}
Whakareatia \frac{1}{4} ki te -6d+3.
3\left(-\frac{3}{2}d+\frac{3}{4}\right)+21d=4
Whakakapia te -\frac{3d}{2}+\frac{3}{4} mō te a_{1} ki tērā atu whārite, 3a_{1}+21d=4.
-\frac{9}{2}d+\frac{9}{4}+21d=4
Whakareatia 3 ki te -\frac{3d}{2}+\frac{3}{4}.
\frac{33}{2}d+\frac{9}{4}=4
Tāpiri -\frac{9d}{2} ki te 21d.
\frac{33}{2}d=\frac{7}{4}
Me tango \frac{9}{4} mai i ngā taha e rua o te whārite.
d=\frac{7}{66}
Whakawehea ngā taha e rua o te whārite ki te \frac{33}{2}, he ōrite ki te whakarea i ngā taha e rua ki te tau huripoki o te hautanga.
a_{1}=-\frac{3}{2}\times \frac{7}{66}+\frac{3}{4}
Whakaurua te \frac{7}{66} mō d ki a_{1}=-\frac{3}{2}d+\frac{3}{4}. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a_{1} hāngai tonu.
a_{1}=-\frac{7}{44}+\frac{3}{4}
Whakareatia -\frac{3}{2} ki te \frac{7}{66} mā te whakarea taurunga ki te taurunga me te tauraro ki te tauraro, ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a_{1}=\frac{13}{22}
Tāpiri \frac{3}{4} ki te -\frac{7}{44} mā te kimi i te tauraro pātahi me te tāpiri i ngā taurunga. Ka whakaiti i te hautanga ki ngā kīanga tau iti rawa e taea ana.
a_{1}=\frac{13}{22},d=\frac{7}{66}
Kua oti te pūnaha te whakatau.
4a_{1}+6d=3,3a_{1}+21d=4
Tuhia ngā whārite ki te tānga ngahuru ka whakamahi i ngā poukapa hei whakaoti i te pūnaha o ngā whārite.
\left(\begin{matrix}4&6\\3&21\end{matrix}\right)\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=\left(\begin{matrix}3\\4\end{matrix}\right)
Tuhia ngā whārite ki te tikanga tātai poukapa.
inverse(\left(\begin{matrix}4&6\\3&21\end{matrix}\right))\left(\begin{matrix}4&6\\3&21\end{matrix}\right)\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\3&21\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakarea mauī i te whārite ki te poukapa kōaro o \left(\begin{matrix}4&6\\3&21\end{matrix}\right).
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\3&21\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Ko te hua o tētahi poukapa me te kōaro ko te poukapa tuakiri.
\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=inverse(\left(\begin{matrix}4&6\\3&21\end{matrix}\right))\left(\begin{matrix}3\\4\end{matrix}\right)
Whakareatia ngā poukapa kei te taha mauī o te tohu ōrite.
\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=\left(\begin{matrix}\frac{21}{4\times 21-6\times 3}&-\frac{6}{4\times 21-6\times 3}\\-\frac{3}{4\times 21-6\times 3}&\frac{4}{4\times 21-6\times 3}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mō te poukapa 2\times 2 \left(\begin{matrix}a&b\\c&d\end{matrix}\right), ko te \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) te poukapa kōaro, nō reira ka taea te tuhi anō te whārite poukapa hei rapanga whakarea poukapa.
\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=\left(\begin{matrix}\frac{7}{22}&-\frac{1}{11}\\-\frac{1}{22}&\frac{2}{33}\end{matrix}\right)\left(\begin{matrix}3\\4\end{matrix}\right)
Mahia ngā tātaitanga.
\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=\left(\begin{matrix}\frac{7}{22}\times 3-\frac{1}{11}\times 4\\-\frac{1}{22}\times 3+\frac{2}{33}\times 4\end{matrix}\right)
Whakareatia ngā poukapa.
\left(\begin{matrix}a_{1}\\d\end{matrix}\right)=\left(\begin{matrix}\frac{13}{22}\\\frac{7}{66}\end{matrix}\right)
Mahia ngā tātaitanga.
a_{1}=\frac{13}{22},d=\frac{7}{66}
Tangohia ngā huānga poukapa a_{1} me d.
4a_{1}+6d=3,3a_{1}+21d=4
Hei whakaoti mā te tangohanga, ko ngā tau whakarea o tētahi o ngā taurangi me mātua ōrite i ngā whārite e rua kia whakakorehia ai te taurangi ina tangohia tētahi whārite mai i tētahi atu.
3\times 4a_{1}+3\times 6d=3\times 3,4\times 3a_{1}+4\times 21d=4\times 4
Kia ōrite ai a 4a_{1} me 3a_{1}, whakareatia ngā kīanga tau katoa kei ia taha o te whārite tuatahi ki te 3 me ngā kīanga tau katoa kei ia taha o te whārite tuarua ki te 4.
12a_{1}+18d=9,12a_{1}+84d=16
Whakarūnātia.
12a_{1}-12a_{1}+18d-84d=9-16
Me tango 12a_{1}+84d=16 mai i 12a_{1}+18d=9 mā te tango i ngā kīanga tau ōrite i ia taha o te tohu ōrite.
18d-84d=9-16
Tāpiri 12a_{1} ki te -12a_{1}. Ka whakakore atu ngā kupu 12a_{1} me -12a_{1}, ka toe he whārite me tētahi taurangi kotahi ka taea te whakaoti.
-66d=9-16
Tāpiri 18d ki te -84d.
-66d=-7
Tāpiri 9 ki te -16.
d=\frac{7}{66}
Whakawehea ngā taha e rua ki te -66.
3a_{1}+21\times \frac{7}{66}=4
Whakaurua te \frac{7}{66} mō d ki 3a_{1}+21d=4. I te mea kotahi anake te taurangi kei te whārite i puta, ka taea e koe te whakaoti mō a_{1} hāngai tonu.
3a_{1}+\frac{49}{22}=4
Whakareatia 21 ki te \frac{7}{66}.
3a_{1}=\frac{39}{22}
Me tango \frac{49}{22} mai i ngā taha e rua o te whārite.
a_{1}=\frac{13}{22}
Whakawehea ngā taha e rua ki te 3.
a_{1}=\frac{13}{22},d=\frac{7}{66}
Kua oti te pūnaha te whakatau.